
OmniBER XM
network simulator
API Programming Guide

sdh_Lynx2.book Page 148 Wednesday, April 17, 2002 12:49 PM

Agilent
OmniBER XM
Network Simulator
API Programming Guide
Agilent Technologies

Notices
© Agilent Technologies, Inc. 2001

No part of this manual may be reproduced
in any form or by any means (including
electronic storage and retrieval or transla-
tion into a foreign language) without prior
agreement and written consent from Agi-
lent Technologies, Inc. as governed by
United States and international copyright
laws.

Sales and Service Offices

An up-to-date list of Agilent Offices is
available through the Agilent Website at
URL: http//www.agilent.com

Manual Part Number
J7241-90012

Warranty
The material contained in this doc-
ument is provided “as is,” and is
subject to being changed, without
notice, in future editions. Further,
to the maximum extent permitted
by applicable law, Agilent disclaims
all warranties, either express or
implied, with regard to this manual
and any information contained
herein, including but not limited to
the implied warranties of mer-
chantability and fitness for a par-
ticular purpose. Agilent shall not be
liable for errors or for incidental or
consequential damages in connec-
tion with the furnishing, use, or
performance of this document or of
any information contained herein.
Should Agilent and the user have a
separate written agreement with
warranty terms covering the mate-
rial in this document that conflict
with these terms, the warranty
terms in the separate agreement
shall control.

Technology Licenses
The hardware and/or software described in
this document are furnished under a
license and may be used or copied only in
accordance with the terms of such license.

Restricted Rights Legend
If software is for use in the performance of
a U.S. Government prime contract or sub-
contract, Software is delivered and
licensed as “Commercial computer soft-
ware” as defined in DFAR 252.227-7014
(June 1995), or as a “commercial item” as
defined in FAR 2.101(a) or as “Restricted
computer software” as defined in FAR
52.227-19 (June 1987) or any equivalent
agency regulation or contract clause. Use,
duplication or disclosure of Software is
subject to Agilent Technologies’ standard
commercial license terms, and non-DOD
Departments and Agencies of the U.S.

Government will receive no greater than
Restricted Rights as defined in FAR
52.227-19(c)(1-2) (June 1987). U.S. Gov-
ernment users will receive no greater than
Limited Rights as defined in FAR
52.227-14 (June 1987) or DFAR
252.227-7015 (b)(2) (November 1995), as
applicable in any technical data.

Safety Notices

CAUTION

A CAUTION notice denotes a
hazard. It calls attention to an
operating procedure, practice, or
the like that, if not correctly per-
formed or adhered to, could result
in damage to the product or loss
of important data. Do not proceed
beyond a CAUTION notice until
the indicated conditions are fully
understood and met.

WARNING

A WARNING notice denotes a
hazard. It calls attention to an
operating procedure, practice,
or the like that, if not correctly
performed or adhered to, could
result in personal injury or
death. Do not proceed beyond a
WARNING notice until the
indicated conditions are fully
understood and met.
Edition
First edition, February 2004

Printed in UK

Agilent Technologies UK Limited

South Queensferry, West Lothian, Scot-
land

EH30 9TG
2 API Programming Guide

In this Programming Guide
API Programming Guide
You will find information on how to control the OmniBER XM
programmatically, through the application programming interface
(API).
1
 Introduction to the API

This chapter explain the system API and the choice of Syntax available
(SCPI or Tcl), and also the stages involved in running a typical test
session.
2
 Example Session

This chapter gives step by step instructions on how to set up and run an
example test session. At each stage the API commands used are
explained.
3
 Tcl Shell-Interactive Control

This chapter explains how the Tcl Shell can be used to input any API
command from a command prompt.
4
 Command Reference

This chapter lists and gives explanations of all the commands necessary
to operate the OmniBER XM remotely.
5
 Objects

Provides a list of OmniBER XM objects.
3

4
 API Programming Guide

Printed in U.K.

© Copyright Agilent Technologies, 1999 — 2004.
All rights reserved.

The information contained in this document is subject to change without notice.

AGILENT TECHNOLOGIES MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE.

Agilent Technologies shall not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this material.

Agilent Technologies, the Agilent logo and OmniBER XM network simulator are trademarks of Agilent
Technologies.

Microsoft®, MS-DOS®, Windows®, Windows NT®, and Windows 2000® are U.S. registered trademarks
of Microsoft Corporation.

Adobe®, Acrobat®, and the Acrobat Logo® are trademarks of Adobe Systems Incorporated.

UNIX® is a registered trademark of the Open Group.

A copy of the specific warranty terms applicable to your product and replacement parts can be obtained
from your local Agilent Technologies representative. Should you require technical assistance, contact
your local Agilent Technologies representative. For contact information, refer to the OmniBER XM
network simulator User Guide.

New editions of this guide are issued to reflect extensive changes made to the product. Revisions may
be issued, between editions, to correct errors in the manual.

Manual Name: OmniBER XM network simulator API Programming Guide

Edition Publication Date
1.0 February 2004

Copyright

Notice

Trademarks

Warranty and
Product support

Printing history

6
 API Programming Guide

API Programming Guide
Certification
Agilent Technologies certifies that this product met its published specifications at the time of
shipment from the factory.
OmniBER XM network simulator: Agilent Technologies further certifies that calibration
measurements made on its manufactured network simulator interface modules are traceable to
the United States National Institute of Standards and Technology, to the extent allowed by that
organization’s calibration facility, and to the calibration facilities of other International Standards
Organization members.

Additional Information for Test and Measurement Equipment
To comply with EMC regulations, shielded cables should be used on all appropriate connections.
Otherwise, the user has to ensure that, under operating conditions, the Radio Interference
Limits are still met at the border of the user's premises.

Warnings
The following general safety precautions must be observed during all phases of operation,
service, and repair of this product. Failure to comply with these precautions or with specific
warnings elsewhere in this manual violates safety standards of design, manufacture, and
intended use of the product. Agilent Technologies assumes no liability for the customer’s failure
to comply with these requirements.
Ground the Equipment: For safety, Class 1 equipment (equipment having a protective earth
terminal), an uninterruptible safety ground must be provided from the mains power source to
the product input wiring terminals or supplied power cable. Before operating the equipment,
guard against electric shock in case of fault by always using the provided 3-conductor power
cord to connect the equipment to a grounded power outlet.
DO NOT use in hazardous environments: Do not operate the product in an explosive atmosphere
or in the presence of flammable gases or fumes. This product is designed for indoor use only.
DO NOT use repaired fuses or short-circuited fuse holders: For continued protection against fire,
replace line fuses only with fuses of the same voltage and current rating and type.
Keep away from live circuits: Operating personnel must not remove equipment covers or
shields. Procedures involving the removal of covers and shields are for use by service-trained
personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures
involving cover or shield removal unless you are qualified to do so.
DO NOT operate damaged equipment: Whenever it is possible that the safety protection
features built into this product have been impaired, either through physical damage, excessive
moisture, or any other reason, REMOVE POWER and do not use the product until safe operation
can be verified by service-trained personnel. If necessary, return the product to an Agilent
Technologies Sales and Service Office for service and repair to ensure the safety features are
maintained.
DO NOT substitute parts or modify equipment: Because of the danger of introducing additional
hazards, do not install substitute parts or perform any unauthorized modification to the product.
Return the product to an Agilent Technologies Sales and Service Office for service and repair to
ensure features are maintained.
DO NOT clean with fluids: Doing so may make the equipment unsafe for use. Power down the
equipment and disconnect the power cord before cleaning. To clean, use a soft dry cloth.
7

8

Safety Symbols

If you see this symbol on a product, you must refer to the manuals for specific Warning or
Caution information to avoid personal injury or damage to the product.

Indicates the field wiring terminal that must be connected to ground before operating the
equipment. Protects against electrical shock in case of fault.

Frame or chassis ground terminal. Typically connects to the equipment’s metal frame.

Alternating current (ac).

Direct current (dc).

Indicates hazardous voltages and potential for electrical shock.

Indicates that antistatic precautions should be taken.

Indicates laser radiation when turned on.

This product complies with CSA requirement CSA 22.2 No. 1010.1, NRTL/C, EN 61010-1:1993
+ A2:1995/IEC 1010-1:1990 + A1:1992 + A2:1995 Safety requirements for electrical
equipment for measurement, control, and laboratory use.

Notice for European Community: This product complies with the relevant European legal
Directives: EMC Directive 89/336/EEC and Low Voltage Directive 73/23/EEC.
Das CE-Zeichen zeigt die Übereinstimmung mit allen für das Produkt geltenden Direktiven der
Europäischen Union an.

This is the symbol for an Industrial, Scientific, and Medical Group 1 Class A product.
Dieses Zeichen steht für ein Produkt der Gruppe 1, Klasse A, für den Einsatz im industriuellen,

or

ISM 1—A
API Programming Guide

API Programming Guide
wissenschaftlichen und medizinischen Bereich.

This product meets the requirements of the Australian EMC Framework (AS/NZS 2064.1/2 for
ISM:1A), enforced by the Radiocommunications Act 1992.

WARNING
Calls attention to a procedure, practice, or condition that could cause bodily injury or death.

CAUTION
Calls attention to a procedure, practice, or condition that could possibly cause damage to
equipment or permanent loss of data.
9

10
 API Programming Guide

Contents

1 Introduction to the API
API Programming Guide
Overview 16

Tcl syntax 17
Sessions 17
Session Stages 19
2 QuickTest
About QuickTest 22

Creating your own QuickTest scripts 22
3 Example session
Introduction 26

Error and Return Value Handling 26

Step 1: Establish a connection 27

Connect to a new test session 27
Connect to an existing test session 28

Step 2: Configure the ports 31

Add tester ports 31
Turn a port laser on and confirm the action 31

Statistics selection 32

Step4: Configure a test 33

Step 5: Run the test 33

Step 6:Collect the results 34

Step 7: Stop the test 34
11

12
Step 8: Clear down 34

Running Example Tcl Scripts 35
4 Tcl Shell - Interactive Control
Tcl Shell Overview 40

To interact through a Tcl shell 42
5 Commands
Quick Reference 44

AgtBreakPoint 47

AgtCloseSession 49

AgtConnect 50

AgtDisconnect 52

AgtFormatTime 53

AgtGetActiveConnection 54

AgtGetServerHostname 55

AgtGetSessionLabel 56

AgtGetSessionPid 57

AgtGetSessionType 58

AgtGetVersion 59

AgtInvoke 60

AgtKillSession 61

AgtListConnections 62

AgtListObjects 63

AgtListOpenSessions 64

AgtListSessionTypes 65

AgtOpenSession 66
API Programming Guide

API Programming Guide
AgtResetSession 68

AgtRestoreSession 69

AgtSaveSession 70

AgtSetActiveConnection 72

AgtSetServerHostname 73

AgtSetSessionLabel 74
6 Objects
Type Definitions 77

Quick Reference 78

AgtTestController 79

AgtModuleManager 82

AgtSessionManager 91

AgtPortSelector 95

AgtTestSession 104

AgtXmSettings 110

AgtXmSonetTransportOverhead 113

AgtXmSdhSectionOverhead 117

AgtXmSonetError 120

AgtXmSdhError 123

AgtXmSonetAlarm 124

AgtXmSdhAlarm 126

AgtXmStatus 127

AgtXmSonetPathOverhead 132

AgtXmSdhPathOverhead 139
13

14
AgtXmPayload 140

AgtXmSonetStatistics 141

AgtXmSdhStatistics 148

AgtXmSonetChannelConfig 156

AgtXmSdhChannelConfig 160

AgtXmBurstControl 162

AgtOpticalInterface 164

AgtXmErrorEventLog 166

AgtXmAlarmEventLog 167

AgtStatisticsLog 168

AgtStatisticsList 169

AgtXmSequenceCapture 170

AgtXmSonetVtConfig 172

AgtXmSdhTuConfig 174

AgtXmSonetVtPathOverhead 176

AgtXmSdhTuLoPathOverhead 179

AgtXmLoPayload 182

AgtXmLoSettings 183

AgtXmTuSettings 184
AgtXmOptionController 185
Supported Datatypes 185
Index
API Programming Guide

Agilent J7241A/42A OmniBER XM Network Simulator
API Programming Guide
1
Introduction to the API
15Agilent Technologies

1 Introduction to the API
Overview
16
You can control the network simulator programmatically, through the
application programming interface (API). This allows you to automate
tests, for example, to:

• Run tests that would be too tedious or imprecise to do manually or
repeatedly through the Graphical User Interface (GUI)

• Integrate tests with larger test suites that access other test equipment
and Systems Under Test

• Repeat tests for subsequent product builds

• Regression test new versions or releases of products

The network simulator is easily integrated into existing or new
production test applications using the API. The text/sockets-based
commands are implemented in any programming environment quickly
and simply. With a few commands, development engineers can build
applications to:

• Connect to the network simulator

• Configure ports

• Configure a test

• Run tests

• Collect results

• Clear down
API Programming Guide

Introduction to the API 1
Tcl syntax
API Programming Guide
AgtInvoke <object> <function> [parameters…]
Example
 AgtInvoke AgtPortSelector AddPort <modules> <port>
Sessions
The API is multi-user. Clients can create new sessions or join existing
ones. The Session manager controls and allocates sessions.

Clients may communicate with the tester locally, from the same PC, or
remotely from another PC or UNIX workstation. The example given in
the following page shows two typical configurations.

COM Objects

Parser
(API Controller)

Socket

Client

Session Manager Test SessionCreates
17

18

1 Introduction to the API
Clients communicate with the tester through an Agilent-supplied
package of commands. These commands send and receive messages
through the general-purpose, line-oriented, TCP socket connection.
Through this connection, API clients have full access to the tester's
capabilities. Changes made through the API are reflected instantly in the
GUI.

A test session is simply an instantiation of the tester software on the host
PC. A session reserves contiguous blocks of test modules for its
exclusive use, and processes commands from its API and GUI clients.
You can run multiple sessions concurrently, and have multiple API and
GUI clients connected to each session. Thus, you can configure and start
each test session independently; the test ports make the actual real-time
measurements and pass results back to the test sessions.
API Programming Guide

Introduction to the API 1
Session Stages
API Programming Guide
The stages in running a typical session are as follows:

1 A connection is made to the session manager and a port to

talk to the session on is established.

2 You add the ports to the session, turn on the port lasers and
configure the Transmitter. This may include selecting
Terminal or Thru mode operation, Signal Mode, Optical
Wavelength, Clock Source, Channels and Payload Pattern.

3 Then you set up the Receiver Signal Mode, Channels and
Pattern.

4 Set up the Transmitter to add Errors and Alarms.

5 This stage might involve setting the duration of the test, the
sampling interval, or the test mode.

6 Then you issue the command to run the test.

7 Results are collected as the test is running and can be
displayed or logged to a file.

8 The test is stopped.

9 Finally the lasers are turned off and the session closed.

Establish a
connection

Configure Ports
and Transmitter

Set up Tx to add
Errors and Alarms

Run the test

Collect the results

Configure Receiver

Stop the test

Clear down

Configure a test
19

20

1 Introduction to the API
API Programming Guide

Agilent J7241A/42A OmniBER XM Network Simulator
API Programming Guide
2
QuickTest
21Agilent Technologies

2 QuickTest
About QuickTest
22
QuickTest is a comprehensive set of test scripts and tools that automate
and simplify the testing of devices using XM. The QuickTest package
also includes a script collection browser, a set of layered libraries, and a
code generator which enable you to develop automated tests to meet
your specific testing needs.
Creating your own QuickTest scripts
You can develop your own test scripts quickly and easily using
QuickTest by accessing the standard template located on the browser's
toolbar. Alternatively, if you would like to add to or change the features
of an existing QuickTest, click the Clone button on the toolbar and use
the instructions below to guide you through the rest of the process. See
below for QuickTest Documentation including API references.

To create a new script

• In the QuickTest GUI, click the Create icon on the toolbar to create a
new script using the standard template.

• Select a script type. A test automates a complete test scenario. A tool
automates part of a test scenario. Now select a name for this script.

• Your script will be stored in the folder:
C:\Program Files\Agilent\OmniBERXM\QuickTest\ UserScripts\
UserScripts\<scriptname>
(or the target directory you used to install XM) and will be accessible
from the browser.

To edit a script

Each script file contains the following files:

<scriptname>.app.tcl
The Application Library file contains the bulk of the test's code. You can
use the functions available in AgtTsuLib.tcl, along with the standard
XM Tcl API, as the basis for your code.
API Programming Guide

QuickTest 2

API Programming Guide
<scriptname>.cfg.tcl
The Configuration file is automatically generated by the GUI script for
consumption by the Application script. You can create copies of this file
with different sets of parameter values for multiple test iterations.

<scriptname>.ini.tcl
The Initialization file contains parameter default values and
initialization.

<scriptname>.description.txt
The Description file contains a concise overview of the test scenario or
tool. You can use existing descriptions as guides to creating a
description of your test or tool.

<scriptname>.diagram.gif
The Diagram file contains a diagram that summarizes the test scenario.
This graphic should provide a good overview of the test and should
complement the text description described above. Save your diagram as
a .gif file called <scriptname>.diagram.gif

<scriptname>.gui.tcl
The GUI application file contains the code that is used to display the
GUI. You can find useful functions for editing the GUI in
AgtTsuLib.tcl, AgtSgaLib.tcl, and AgtQuickTestLib.tcl.

<scriptname>.help.txt
The Online Help file contains a list of the steps involved in configuring
and running a script.

QuickTest documentation

Reference documentation for the AgtTsu library

Reference documentation for the AgtSga library

Reference documentation for the AgtQuickTest library

QuickTest Tutorial (Microsoft PowerPoint Presentation)
23

24

2 QuickTest
API Programming Guide

Agilent J7241A/42A OmniBER XM Network Simulator
API Programming Guide
3
Example session
25Agilent Technologies

3 Example session
Introduction
26
In this chapter we describe each stage in an example test session. At
each stage, the API commands are explained.
Error and Return Value Handling
Any program using the API has to cater for handling errors from the
controller and receiving data in response to a command. When
developing programs using this API bear in mind the following points:

1 Some commands return values in response to an action.
They always return a status result, e.g. S_OK.

2 If the controller experiences an error when attempting to execute a
command it will return an error.

Format of a Tcl reply message

All commands sent to OmniBER XM must also be OXOD, OXOA
terminated.

[Return Value]
2 bytes

0= success
Always exists

[<space>]
1 byte

Always exists

[Further data
Variable length

Variable meaning

[OXOD]
[OXOA]

Fixed ending to
all messages.
OXOD = \r
OXOA = \r
API Programming Guide

Example session 3
Step 1: Establish a connection
API Programming Guide
A client can establish two types of connection:

• A new session or

• An existing session.
Connect to a new test session
To launch a new test session, the client must request a test session from
the Session Manager. The Session Manager then provides a TCP socket
for that session through which all communication between the client and
the test session must pass. This scenario describes the sequence of steps
that a client will follow to launch a new test session and connect to it
using the Session Manager.
Assumptions:
 • Session Manager is running.

• Session Manager has a component listening for socket connections
on a well known port number (i.e. 9001).
COM

Parser

COM

Parser

Session Manager Test Session

Client

2, 3

Creates

5

1 4

Socket

String Protocol String Protocol

Socket
27

3 Example session
Steps:
28
1 A connection has to be made to the session manager on port 9001.
The client opens a socket and a means of communication with the
tester.

2 The OpenSession command is sent to the session manager, and then
you need to call GetSessionPort to find the port number to talk to the
session on. Client issues the command:

> AgtInvoke AgtSessionManager OpenSession OmniberXm

Tester returns
<SessionHandle>

3 Client issues command to get the port number for the test session:
> AgtInvoke AgtSessionManager GetSessionPort <SessionHandle>

Tester returns:
<TcpPortNumber>

4 Client opens socket to test session, using <TcpPortNumber>

5 Client interacts with test session by sending the API text commands
over the socket interface.

There will be multiple instances of the scripting parser, one for the
NOTE
session manager, one for the test session.

At Step 2, when the test session is created it creates an instance of the
parser, which is listening on a particular port number. The session must
return this port number to the session manager.

At Step 3, the session manager returns an error if the test session has not
yet notified the session manager of its listening port.
Connect to an existing test session
This scenario assumes that a session is already running and uses the
services provided by the Session Manager to connect to the session.
API Programming Guide

Example session 3

API Programming Guide
Assumptions:
 • Session Manager is running.

• Session Manager is listening for socket connections on port number
9001.

• Session Manager provides a handle to an open session.

• Test Session is listening for socket connections on a port that is
registered with the Session Manager.
.

COM

Parser

COM

Parser

Session Manager

Client

2, 3

Handle To

5

1 4

Socket Socket

Session

ISession

String Protocol String Protocol
Steps
 1 Client opens socket to port number 9001.

2 Client requests details of running sessions by issuing commands:
> AgtInvoke AgtSessionManager ListOpenSessions

Tester returns:
List<SessionHandles>
29

30

3 Example session
3 Client chooses the session of interest and issues command:
> AgtInvoke AgtSessionManager GetSessionPort <SessionHandle>

Tester returns:
<SessionPort>

4 Client opens socket to running test session.

5 Client interacts with test session by sending the API text commands
over the socket interface.
API Programming Guide

Example session 3
Step 2: Configure the ports
API Programming Guide
At this step you configure the tester ports. You have to add the ports to
the session and turn on the port lasers.

Assumptions:

• Test Session is running.

• Client has opened a socket to the Test Session.
Add tester ports
Steps:
 Client sends message to test session to add a port. (You need to specify
a module number and port number.)
> AgtInvoke AgtPortSelector AddPort <module> <port>

Tester returns:
<PortHandle>
Turn a port laser on and confirm the action
Steps:
 1 Client sends message to turn on the laser of the added port.
> AgtInvoke AgtOpticalInterface LaserOn <PortHandle>

2 Client asks for confirmation of the state of the laser.
> AgtInvoke AgtOpticalInterface IsLaserOn <PortHandle>

Tester returns:
<LaserState>
31

3 Example session
Statistics selection
Steps:
32
1 Client creates a statistics group to collect SONET or SDH statistics .
> AgtInvoke AgtStatisticsList Add AGT_STATISTICS_XM_SONET

Tester returns:
<StatisticsHandle>

2 Client sends message to see the list of available statistics to choose
from.

AgtInvoke AgtXmStatistics ListAvailableStatistics
<StatisticsHandle>

Tester returns:
<List of available statistics>

3 Client sends message to specify the list of statistics to be collected.
AgtInvoke AgtXmStatistics SelectStatistics
<StatisticsHandle> List<StatisticsEnums>

4 AgtInvoke AgtXmStatistics ListSelectedStatistics
<StatisticsHandle>

Tester returns
<List of current statistics selection>

5 Client sends message to select a port to collect statistics from.
AgtInvoke AgtXmStatistics SelectPorts <StatisticsHandle>
List<ports>

6 AgtInvoke AgtXmStatistics ListSelectedPorts <StatisticsHandle>

Tester returns
<List of current ports selection for collecting statistics>
API Programming Guide

Example session 3
Step4: Configure a test
Steps:
API Programming Guide
1 Client sends message to define the test <Mode> as either,

AGT_TEST_ONCE which will run the test for the specified time or,

AGT_TEST_CONTINUOUS which will run the test until the user stops
it.
> AgtInvoke AgtTestController SetTestMode <Mode>

2 If mode is AGT_TEST_ONCE client sends message to define how
long (in seconds) the test will run for.

> AgtInvoke AgtTestController SetTestDuration <Duration>

3 Client sends message to find out whether or not the test is running.
> AgtInvoke AgtTestController GetTestState

Tester returns:
<TestState>
Step 5: Run the test
Steps:
 1 Client sends message to start the test.
> AgtInvoke AgtTestController StartTest

2 Client requests the tester to return the status of the test.
> AgtInvoke AgtTestController GetTestState

Tester returns:
<TestState>
33

3 Example session
Step 6:Collect the results
Steps:
34
1 Client sends message to return the accumulated results of the
selected port(s).

> AgtInvoke AgtXmStatistics GetAccumulatedValues

Tester returns:
<SamplingInterval> <StatisticsResults>

Note that the list of <StatisticsResults> will be returned when requested,
irrespective of the interval of the test. The returned results will be the
accumulated values of all the sampling intervals up to the time the
request is issued. The <SamplingInterval> is the number of seconds that
have elapsed since statistics collection started. It provides a means to
order and correlate results, and to derive average statistics per interval.
Step 7: Stop the test
Steps:
 1 Client may stop any test if the test <Mode> was set to
AGT_TEST_CONTINUOUS (in) by sending the command.

> AgtInvoke AgtTestController StopTest

This will stop the test at any time. Another test can then be initiated or
the session cleared down .
Step 8: Clear down
Steps:
 1 Client sends message to turn the transmit lasers off.
> AgtInvoke AgtOpticalInterface AllLasersOff

2 Client sends message to close the session.
> AgtInvoke AgtSessionManager CloseSession <SessionHandle>
API Programming Guide

Example session 3
Running Example Tcl Scripts
API Programming Guide
A basic Tcl script (DemoTclScript.tcl) is provided on the CD-ROM
shipped with your OmniBER XM. The Tcl script illustrates the
following:

• How to create a session

• Add ports

• Gate for 20 seconds

• Add B1 errors on any port and B3 errors on all channels

• Return the B1 and B3 error count post gating

Display the number of B1 and B3 errors at the end of the gating period.

Procedure

If you are running this sample script on the XM controller (local
operation) go to the Local Operation procedure on page 37. Steps 1 to
13 give instructions on how to set up the OmniBER XM for remote
operation via a remote PC.

Remote operation via remote PC
35

36

3 Example session
Steps 1 to 5 explain how to install Tcl

1 If you do not already have Tcl installed you must install it now. A
convenient way to do this is by using the OmniBER XM CD-ROM
supplied with your system. Tcl is automatically installed when you
install the OmniBER XM GUI.

2 Insert the OmniBER XM CD-ROM in your PC and once it starts
click on the OmniBER XM Software link.

3 Select Run this program from its current location and then click
OK. If you get a Security Warning dialog appearing, select Yes.

4 Follow the instructions on screen until you reach the Setup Type
window, then select Client GUI only.

5 When the Install extra components window is displayed select the
Tcl component, deselect the other component options.

Start here if you have already installed Tcl

6 On the remote computer select Start, then the Run button and in the
Run dialog window type tclsh82.
Note you may need to change this depending on the version of Tcl
you have downloaded to your machine).

7 Type package require AgtClient.

8 Type AgtSetServerHostname <name of the tester XM
controller> (no <>s). Example: AgtSetServerHostname xmtest08
(where xmtest08 is the name of the tester XM Controller)

9 Type AgtGetVersion.

10 The sample script (DemoTclScript.tcl) is installed on your
OmniBER XM CD-ROM. Insert your CD-ROM into the remote PC.

11 Select Start, then Run and enter cmd

12 Type the following:
D:\>tclsh82 DemoTclScript.tcl -r xmtest08 -p "101/1 102/1"
(where D is the drive containing your CD-ROM). See Note in step 6
regarding Tcl versions. Note that -r is followed by the name of the
OmniBER XM controller (in this example xmtest08); -p is followed
by the name of the available ports that you wish to add.

13 The program will run.
API Programming Guide

Example session 3

API Programming Guide
Local Operation

The OmniBER chassis and modules are controlled directly by the
OmniBER XM controller; there is no remote PC involved. The required
Tcl files are already installed. The basic Tcl script
“DemoTclScript.tcl” is installed in: the OmniBER XM CD-ROM and
also at:
C:\Program Files\Agilent\OmniberXM\doc\

1 Copy “DemoTclScript.tcl” into a more convenient folder (e.g.C:\
Tcl\) or use the file from its current position. Make a note of the file
name and saved path (example-C:\Tcl\DemoTclScript.tcl).

2 Select Start, then Run and enter cmd.

3 Type D:\>tclsh82 DemoTclScript.tcl -p "101/1 102/1" (where D
is the drive containing your CD-ROM) - modify path as appropriate
for your own setup. Note. you may need to change the Tcl version
depending on the version of Tcl you have downloaded to your
machine, it may for example be tclsh84). Note that -p is followed by
the name of the available ports that you wish to add.

4 The program will run.

Viewing the DemoTclScript file

You can view the contents of the DemoTclScript file using Notepad.

On your PC select Start/Programs/Accessories/Notepad - browse to
where the DemoTclScript file is and select Open.
37

38

3 Example session
API Programming Guide

Agilent J7241A/42A OmniBER XM Network Simulator
API Programming Guide
4
Tcl Shell - Interactive Control
39Agilent Technologies

4 Tcl Shell - Interactive Control
Tcl Shell Overview
40
OmniBER XM network simulator is supplied with a useful
interactive tool to help develop and test integration development.
The Tcl shell allows input of any API command (using Tcl Syntax)
from a command prompt.

To launch a Tcl shell
OmniBER XM
network simulator
menu

 Use this method if the
OmniBER XM network
simulator is already running.

Windows NT Start
menu

. Use this method if it is not.

DOS Command
prompt

1 Go to directory
Program Files\Agilent\
OmniBERXM\tcl

2 Execute tclsh82 to start the
Tcl shell.
API Programming Guide

Tcl Shell - Interactive Control 4

API Programming Guide
To set Tcl shell properties

You should redefine a couple of Tcl shell properties:
Enabling QuickEdit Mode lets you use the left and right mouse buttons
to copy and paste text in the Tcl shell. (This is much faster than using
the Edit sub-menu.)

Increasing the Screen Buffer Height lets you scroll the display back to
see previous commands and output.

After clicking OK on the Properties dialog, select “Modify shortcut
which started this window” to use the same settings every time you
launch a Tcl shell.
41

4 Tcl Shell - Interactive Control
To interact through a Tcl shell
42
An ideal use of the Tcl Shell is to debug integration programs. You can
enter individual commands (using Tcl syntax) into a Tcl shell's
command line. Again, changes are reflected instantly in the tester's GUI.
API Programming Guide

Agilent J7241A/42A OmniBER XM Network Simulator
API Programming Guide
5
Commands

“Quick Reference" on page 44
43Agilent Technologies

5 Commands
Quick Reference
44
To communicate with the tester

AgtConnect ?SessionHandle? -> ConnectionID

Opens a TCP socket connection to a test session already opened by a GUI or
API client

AgtDisconnect ?ConnectionID?

Closes a connection to a test session

AgtListConnections -> ConnectionIDs

Lists the connections your API client has to different test sessions

AgtSetActiveConnection ConnectionID

Sets the active connection, to which subsequent API commands apply

AgtGetActiveConnection -> ConnectionID

Returns the ID of the connection to which subsequent commands apply

To manage test sessions

AgtListSessionTypes -> SessionTypes

Lists the types of test sessions you may initiate

AgtOpenSession SessionType ?SessionMode? -> SessionHandle

Opens a new test session (that is, one not opened by a GUI) and connects to
it.

AgtCloseSession SessionHandle

Closes a test session gracefully, stopping if there are connected
clients

AgtKillSession SessionHandle

Closes a test session immediately, even if there are connected clients
AgtListOpenSessions -> SessionHandles

Lists all the currently running test sessions

AgtSaveSession Filename ?Objects?
AgtRestoreSession Filename ?Objects?
API Programming Guide

Commands 5

API Programming Guide
Saves a test configuration (that is, protocol settings, simulations,
defined traffic) to a plain text file. Loads a previously saved test
configuration.

AgtResetSession

Resets the current test configuration to default values
AgtSetSessionLabel SessionHandle SessionLabel
Assigns a descriptive label to a test session
AgtGetSessionLabel SessionHandle -> SessionLabel
AgtGetSessionType SessionHandle -> SessionType
AgtGetSessionPid SessionHandle -> SessionPid
Returns a test session's label, type, and process ID

To manage tests remotely

AgtSetServerHostname ?Hostname?

Selects the tester (host name or IP address) to which subsequent
commands apply

AgtGetServerHostname -> Hostname

Returns the hostname or IP address of the currently active tester

To manage test objects

AgtListObjects ?AGT_SAVEABLE? ?AGT_SAVED <Filename>? ->
Objects

Lists the tester objects you may program through AgtInvoke, may
save into a configuration file, or previously saved in a configuration
file.

AgtInvoke Object Method InParam1 InParam2 -> OutParam

Accesses the specified tester object and controls it as indicated by the
method (get, set, enable, list, etc.) and parameters (see Quick Reference for
all available objects).

AgtFormatTime SystemTimeSec -> FormattedTime

Returns a formatted time string for a time expressed in seconds since
Epoch.
45

46

5 Commands
To debug scripts

AgtBreakPoint

Interactively steps through each AgtInvoke command in a script,
allowing you to isolate the source of problems.
API Programming Guide

Commands 5
AgtBreakPoint
Syntax
API Programming Guide
AgtBreakPoint
Summary
 Interactively steps through each AgtInvoke command in a Tcl script,
allowing you to view the results of each command and isolate the source
of problems.
Details
 When you source an API script, the commands are executed one after
the other until the script either runs successfully to completion or
generates an error. If there is an error, you can use AgtBreakPoint to
isolate the command that yielded the error by checking the results of
commands leading up to the error.

Embed AgtBreakPoint before the problematic area within the script,
such that it prompts you only about the commands in question. (This
command is not as useful when entering commands one at a time
through the Tcl shell.)

When an AgtBreakPoint command is encountered in a script, the
following prompt is displayed in the Tcl shell:
About to perform 'AgtInvoke <Object> <Method> '
(<CR>,y,n,q,c,t)

The possible actions are:

• <CR> or y: Execute the next command.

• c: Continue running the script to completion, without breaking with
prompts.

• n: Don't execute this command.

• q: Exit this script.

• t: Trace this command (not currently implemented).
Error codes
 0 Success.
1 Bad argument.
47

5 Commands
Example
48
Inserting an AgtBreakPoint command into the sample script
basic-test.tcl before the first AgtInvoke command yields the prompts
shown below. Press <CR> to continue after each prompt.
% source basic-test.tcl

Setting up the basic test ...
Connecting to session named Administrator on localhost ...

About to perform 'AgtInvoke AgtTestSession ResetSession '
(<CR>,y,n,q,c,t)

Reserving test ports 1A and 1B -- this may take several
seconds ...

About to perform 'AgtInvoke AgtPortSelector AddPorts {1A
1B}'(<CR>,y,n,q,c,t)

Setting the SUT interface IP addresses to 192.18.1.1/24 and
192.18.2.1/24 ...
About to perform 'AgtInvoke AgtSutInterfaceList Add
AGT_SUT_INTERFACE' (<CR>,y,n,q,c,t)

About to perform 'AgtInvoke AgtSutInterfaceList Add
AGT_SUT_INTERFACE' (<CR>,y,n,q,c,t)

About to perform 'AgtInvoke AgtSutInterface SetSutIpAddress
1 192.18.1.1 24' (<CR>,y,n,q,c,t)

About to perform 'AgtInvoke AgtSutInterface SetSutIpAddress
2 192.18.2.1 24' (<CR>,y,n,q,c,t)
API Programming Guide

Commands 5
AgtCloseSession
Syntax
API Programming Guide
AgtCloseSession SessionHandle
Synopsis
 Closes a running test session.

Notes:

• You cannot close a session if a GUI is still connected, but can if only
API clients are connected.

• If this command does not work, see “AgtKillSession” on page 61.
Parameters
long A handle to the test session, as returned by AgtOpenSession or
SessionHandle
AgtListOpenSessions.
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession. You connect to a running test session using
AgtConnect and disconnect using AgtDisconnect. You can set up
multiple connections to different test sessions but there is always only
one active connection. AgtCloseSession closes a currently open test
session, and all connections to that session. The test session associated
with the graphical user interface is automatically closed when the
graphical user interface exits and should not be closed by a script.
Error codes
 0 Success.

1 Invalid session handle. Use AgtListOpenSessions to obtain
handles for currently running sessions, and
AgtGetSessionLabel to identify each session.
Example
 To open a test session through the API
49

5 Commands
AgtConnect
Syntax
50
AgtConnect ?Session? -> ConnectionID
Synopsis
 Opens a TCP socket connection between your API client (ie. the Tcl
shell interpreting your script or interactive commands) and a currently
running test session. Allows you to begin sending commands to a test
session.

Note: If you used AgtOpenSession to start a test session, you do not
need to call this command. Your API client will be connected
automatically. You use this command to connect to test sessions
launched through the graphical user interface or by other API clients.
Use AgtListOpenSessions to list the currently running test sessions.
You may connect to sessions opened by a GUI as a hosted DLL, as well
as those opened by a GUI or another API client as a standalone EXE
executable.
Parameters
ng (Optional) An ID number or a label to a currently running test session.
Session lo
To list the IDs of current sessions, use AgtListOpenSessions. To get
the label of a current session, use AgtGetSessionLabel.
You may leave out this parameter if there is only one test session
currently running. If however there are no or multiple sessions
running, you will get an error.
To connect to a test session on a remote test system, simply call
AgtSetServerHostname beforehand to specify the remote test system
to which this AgtConnect call applies.

ConnectionID long A handle to the connection, which becomes the current
connection to which subsequent commands apply. You may
have multiple connections to several test sessions, but there is
always only one active connection. Switch the active connection
using AgtSetActiveConnection.
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession. You connect to a running test session using
API Programming Guide

Commands 5

API Programming Guide
AgtConnect and disconnect using AgtDisconnect. You can set up
multiple connections to different test sessions but there is always only
one active connection.

AgtCloseSession closes a currently open test session, and any
connection to that session. The test session associated with the graphical
user interface is automatically closed when the graphical user interface
exits and should not be closed by a script.
Error codes
 0 Success.

1 Invalid session handle.

• If you specified a session: The session is not running.

• If you did not specify a session: There is no session running or
there are more than one.
Examples
 • To connect an API client to a test session

• To open a test session through the API

• To manage tests from a remote computer
51

5 Commands
AgtDisconnect
Syntax
52
AgtDisconnect ?ConnectionID?
Synopsis
 Closes the specified connection.
Parameters
ng (Optional) A handle to a connection, as returned by AgtConnect
Connection ID lo
or AgtOpenSession. If not specified, defaults to the active
connection, as last set by AgtConnect, AgtOpenSession, or
AgtSetActiveConnection. To determine the current, active
connection, call AgtGetActiveConnection.
Error codes
 0 Success.

1 Invalid connection.

• If you specified a connection: There is no such connection active.

• If you did not specify a connection: There is no active connection.
Example
 To stop a test
API Programming Guide

Commands 5
AgtFormatTime
Syntax
API Programming Guide
AgtFormatTime SystemTimeSec -> FormattedTime
Synopsis
 Accepts a time value in terms of the number of seconds elapsed since
an epoch, and returns it in a date and time-of-day format.
Parameters
teger System time in terms of the number of seconds elapsed since midnight
SystemTime in
(00:00:00), January 1, 1970, coordinated universal time according to
the system clock.

FormattedTime list System time formatted as: [Abbreviated Day Name] [Abbreviated
Month Name] [Day of Month] [Hour:Minute:Second] [Year with
Century]. For example, Sun Oct 31 13:46:50 1999
Details
 Objects such as AgtIpStatus, AgtHdlcStatus, and AgtSonetStatus can
obtain a timestamped record of when events occurred. The recorded
system time is in terms of the number of seconds elapsed since midnight
(00:00:00), January 1, 1970, coordinated universal time (according to
the system clock). AgtFormatTime formats this system time into the
readable date and time-of-day format.
Error codes
 0 Success.

1 There are no active connections.
Example
 set statusHistory [AgtInvoke AgtSonetStatus
GetStatusHistory]
set systemTime [lindex $statusHistory 3]
set formattedTime [AgtFormatTime $systemTime]
53

5 Commands
AgtGetActiveConnection
Syntax
54
AgtGetActiveConnection -> ConnectionID
Synopsis
 Returns the API client's active connection, to which subsequent
commands apply.
Parameters
long A connection ID previously returned by AgtConnect or
ConnectionID
AgtOpenSession.
Details
 An API client connects to a running test session using AgtConnect, or
creates a connection to a new session using AgtOpenSession. A client
can maintain multiple connections to different test sessions but there is
always only one active connection. The most recent call to AgtConnect
or AgtOpenSession sets the active connection implicitly. Use
AgtGetActiveConnection to determine the active connection and
AgtSetActiveConnection to select the active connection explicitly.
When finished, use AgtDisconnect to close a connection.
Error codes
 0 Success.

1 There are no active connections.
Example
 To open a test session through the API
API Programming Guide

Commands 5
AgtGetServerHostname
Syntax
API Programming Guide
AgtGetServerHostname -> Hostname
Synopsis
 Returns the host name of the test system to which the Tcl client is
currently connected.
Parameters
ring The host computer name of the test system to which subsequent
Hostname st
commands apply. You can determine a test system's host computer
name and IP address by right-clicking Network Neighborhood and
selecting Properties.
Details
 The test system software itself always runs on the Windows computer
that is connected to the test modules. However, you may control the
system remotely, from another Windows computer or UNIX-based
workstation connected to the test system via TCP/IP.

You can control the test system as part of a larger test configuration
comprising other test instruments and scripts which control the system
under test. You simply copy the small library of portable Tcl
commands, AgtClient, to the remote computer. By default, the scripting
environment selects "localhost" and Tcl scripts and commands operate
on the local computer. To operate on a remote computer, call
AgtSetServerHostname. To determine the computer to which a script is
currently connected, call AgtGetServerHostname.
Error codes
 0 Success.
Example
 To manage tests from a remote computer
55

5 Commands
AgtGetSessionLabel
Syntax
56
AgtGetSessionLabel SessionHandle -> SessionLabel

Synopsis Returns the descriptive label assigned to the specified
(running) test session, to help identify that session amongst multiple
running sessions.
Parameters
ong A handle to the test session, as returned by AgtListOpenSessions or
SessionHandle l
AgtOpenSession.

SessionLabel string A description of the test session. The default label is the user login
name for sessions launched through the GUI and "SYSTEM" for
sessions launched through the API. This name may be changed using
AgtSetSessionLabel.
Details
 The test session must be running, either from the graphical user
interface or from a call to AgtOpenSession.
Error codes
 0 Success.

1 Invalid session handle. Use AgtListOpenSessions to obtain valid
handles for currently running sessions, and AgtGetSessionLabel to get
the label currently used to identify each session.
Example
 To open a test session through the API.
API Programming Guide

Commands 5
AgtGetSessionPid
Syntax
API Programming Guide
AgtGetSessionPid SessionHandle -> SessionPid
Summary
 Returns a test session's process ID.

Note: This is the same as AgtInvoke AgtSessionManager
GetSessionPid.
Parameters
long A handle to the test session, as returned by AgtOpenSession or
SessionHandle
AgtListOpenSessions.

SessionPid long If there are several users running test sessions and you need to kill a
session through the Windows Task Manager, you can use this to
identify a session's process ID.
Details
 For information about test sessions, see AgtOpenSession (Details).
Error codes
 0 Success.
1 Invalid session handle. Use AgtListOpenSessions to obtain
handles for currently running sessions, and
AgtGetSessionLabel to identify each session.
Example
 % AgtListOpenSessions
5
% AgtGetSessionPid 5
142
57

5 Commands
AgtGetSessionType
Syntax
58
AgtGetSessionType SessionHandle -> SessionType
Summary
 Returns a test sessions's type.

Note: This is the same as AgtInvoke AgtSessionManager
GetSessionType.
Parameters
e long A handle to the test session, as returned by AgtOpenSession or
SessionHandl
AgtListOpenSessions.

SessionType string The type of test session. For a listing of possible types, see
AgtListSessionTypes.
Details
 For information about test sessions, see AgtOpenSession (Details).
Error codes
 0 Success.
1 Invalid session handle. Use AgtListOpenSessions to obtain
handles for currently running sessions, and
AgtGetSessionLabel to identify each session.
Example
 % AgtListOpenSessions
5
% AgtGetSessionType 5
IpPerformance
API Programming Guide

Commands 5
AgtGetVersion
Syntax
API Programming Guide
AgtGetVersion -> Version
Synopsis
 Gets the version of the XM software currently installed on a local or
remote PC.
Parameters
string The version of the XM base software currently installed on the PC.
Version
Includes a major and minor version number (eg. 1.2). May also
include two additional numbers if you are using pre-release software
(eg. 1.1.4.11).
Details
 To get the version of the XM software on a remote PC, you must first
identify the remote PC — see the example below.
Error codes

0 Success.

1 Unable to connect to the session manager. The PC either does not
have the XM software installed or does not have its Resource
Manager service running
Example
 % AgtGetVersion
1.2
% AgtSetServerHostname OmniBERXM_2
OmniBERXM_2
% AgtGetVersion
1.1.4.11

.

59

5 Commands
AgtInvoke
Syntax
60
AgtInvoke Object Method ParameterList
Synopsis
 Sends messages to objects in the test system (the same objects
represented in the graphical user interface), so that you can configure,
start/stop, and get information about test system components.
Parameters
object> An object in the test system, as listed under the Quick Reference in
Object <
Objects.

Method <method> One of several possible actions you can perform on the object.

ParameterLis
t

list <params>The parameters required by or returned by the method.
Details
 Once a connection is established with a running test session (using
AgtConnect or AgtOpenSession), AgtInvoke is the primary API
command used to interact with the tester. The functionality of the tester
is provided through objects. Each object provides a number of methods,
which are valid operations on the object. Each method in turn has
parameters: some input, some output.
Error codes
 0 Success.
1 Bad argument.
Examples
 To connect an API client to a test session
API Programming Guide

Commands 5
AgtKillSession
Syntax
API Programming Guide
AgtKillSession SessionHandle
Synopsis
 Closes a running test session if AgtCloseSession cannot — please read
the Details below.
Parameters
e long A handle to the test session, as returned by AgtListOpenSessions or
SessionHandl
AgtOpenSession.
Details
 Normally, you use AgtCloseSession to close a test session. But, there
may be a specific situation where you cannot connect to a running test
session to close it or AgtCloseSession cannot close the session.

If the test session is running on a remote computer, use
AgtSetServerHostname to connect to that computer first, before issuing
the command.

This command uses the "kill.exe" program to end the session's process.
The program bypasses the Windows Task Manager requirement that
you have administrators' privileges to end OMniBER XM processes.
Error codes

0 Success

1 Invalid session handle. Use AgtListOpenSessions to obtain valid
handles for currently running sessions, and AgtGetSessionLabel to get
the label currently used to identify each session.
Example
 % package require AgtClient
0.1
% AgtSetServerHostname omniberxm
omniberxm
% AgtListOpenSessions
6
% AgtKillSession 6
61

5 Commands
AgtListConnections
Syntax
62
AgtListConnections -> ConnectionIDs
Synopsis
 Lists all the connections that are open between the current API client
(ie. the Tcl shell interpreting your script or interactive commands) and
local or remote test sessions.
Parameters
t<long> A list of connection IDs. These IDs were previously returned by
ConnectionIDs lis
AgtConnect or AgtOpenSession.
Details
 To determine which of the listed connections is the active one (ie. the
one to which subsequent commands apply), call
AgtGetActiveConnection. To set the active connection to another one,
call AgtSetActiveConnection.
Error codes
 0 Success.
Example
 To open a test session through the API
API Programming Guide

Commands 5
AgtListObjects
Syntax
API Programming Guide
AgtListObjects ?AGT_SAVEABLE? ?AGT_SAVED <Filename>? ->
Objects
Synopsis
 Lists the API objects that you may program (varies depending on the
test modules and applications purchased for your tester). Or, lists the
objects whose configuration settings may be saved through
AgtSaveSession.
Parameters
L enum (Optional) Include this enumerated value to list only those API
AGT_SAVEAB
E objects whose configuration settings are saveable through

AgtSaveSession.

AGT_SAVED enum (Optional) Include this enumerated value to list the API objects saved
in the specified configuration file.

Filename string (Required if using AGT_SAVED) The name of the configuration file
whose saved objects you want to list. The file name should be of a
fully specified pathname, as described for AgtSaveSession.

Objects string A list of the API objects available or saveable.
Details
 The tester components you may program are represented by objects, for
example, types of protocol emulations, simulated network topologies,
traffic characteristics, statistics. Each object has its own set of methods,
representing the actions you may perform, for example, set or get. You
use this command to list the objects that are available on your tester. For
a complete list of all available objects, see this quick reference to the
API objects. Use the command AgtInvoke to invoke methods on
objects.
Error codes
 0 Success.
Examples
 • To connect an API client to a test session

• To save, restore, or reset a test configuration
63

5 Commands
AgtListOpenSessions
Syntax
64
AgtListOpenSessions -> SessionHandles
Synopsis
 Lists the test sessions that are currently open.
Parameters
t<long> A list of handles to the open test sessions.
SessionHandles lis
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession. You connect to a running test session using
AgtConnect and disconnect using AgtDisconnect. You can set up
multiple connections to different test sessions but there is always only
one active connection. AgtCloseSession closes a currently open test
session, and all connections to that session. The test session associated
with the graphical user interface is automatically closed when the
graphical user interface exits and should not be closed by a script.
Error codes
 0 Success.
Example
 To open a test session through the API
API Programming Guide

Commands 5
AgtListSessionTypes
Syntax
API Programming Guide
AgtListSessionTypes -> SessionTypes
Summary
 Lists all test applications available on the OmniBER XM system.
NOTE You must enter a valid license to use optional applications. For details,
see the User’s Guide, Chapter 1, “Introduction”, “To add or change
product licenses”.
Parameters
string The type of test session. For a listing of possible types, see
SessionTypes
“AgtOpenSession” on page 66.
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession.

You connect to a running test session using AgtConnect and disconnect
using AgtDisconnect. You can set up multiple connections to different
test sessions but there is always only one active connection.

AgtCloseSession closes a currently open test session, and all
connections to that session. The test session associated with the
graphical user interface is automatically closed when the graphical user
interface exits and should not be closed by a script.
Error codes
 0 Success.
Example
 To open a test session through the API
65

5 Commands
AgtOpenSession
Syntax
66
AgtOpenSession SessionType ?SessionMode? -> SessionHandle
Summary
 Starts an instantiation of the test session software.
Parameters
ring A type of test application. Yiu may pass AgtOpenSession to open a
SessionType st
test session.

SessionMode string (Optional) Whether to start a session for full testing or configuration
only.
• AGT_SESSION_ONLINE: (Default, selected if this parameter is

not specified) You select this mode if you are doing more than just
configuring a test, for example, if you also want to generate traffic
and view statistics. This reserves the modules you select on a
subsequent call to AgtPortSelector, thus locking out anyone else
who might attempt to use the same modules to generate traffic. The
test session will actively connect to all selected test ports and
download test configurations. Note: The test modules do not need
to be connected as you can simulate connected test modules using
the system variable AGT_DUMMY_MODULES.

• AGT_SESSION_OFFLINE: You select this mode if you are
simply configuring tests. This neither reserves the test modules nor
locks out anyone who may want to use the GUI or API to run tests
on the same modules. Your test configurations are stored locally on
the PC and not downloaded to the test ports.

Note: API clients cannot set the test session's context (that is, EXE or
DLL), the way you can through the GUI. All test sessions launched
through the API are launched as detached EXE executables. To get
the mode and context of the current test session, use AgtInvoke
AgtTestSession (GetMode and GetContext methods).

SessionHandle
(ConnectionID)

long A handle to the test session, which doubles as the handle to the
connection that is automatically set up between the API client and the
test session. This connection becomes the current connection to which
subsequent commands apply.
To switch to another connection, use AgtSetActiveConnection. To get
the handle of the current test session, use AgtInvoke AgtTestSession
(GetHandle method).
API Programming Guide

Commands 5
Details
API Programming Guide
You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession.

You connect to a running test session using AgtConnect and disconnect
using AgtDisconnect. You can set up multiple connections to different
test sessions but there is always only one active connection.

AgtCloseSession closes a currently open test session, and all
connections to that session. The test session associated with the
graphical user interface is automatically closed when the graphical user
interface exits and should not be closed by a script.
Error codes
 0 Success.
1 Bad argument.
Example
 To open a test session through the API
67

5 Commands
AgtResetSession
Syntax
68
AgtResetSession ?Objects?
Synopsis
 Resets the current test session configuration, restoring all saveable
objects to their default state.
Parameters
ring OR (Optional) A list of the objects whose settings you want to reset. By
Objects st
list<string> default, if this parameter is left out, all objects are reset. To list the

objects you can reset, use the command AgtListObjects with the
parameter AGT_SAVEABLE. To build a list of the objects you want
to reset, see the Example.
Details
 This is useful at the end of a test. You do not have to explicitly reset the
configuration to original values.
Error codes

0 Success.

1 Error.
Example
 To save, restore, or reset a test configuration
API Programming Guide

Commands 5
AgtRestoreSession
Syntax
API Programming Guide
AgtRestoreSession Filename ?Objects?
Synopsis
 Restores a test session to a previously saved configuration. You may
restore all objects saved in the file or specific objects only.
Parameters
tring The name of the file from which to restore the configuration. If a test
Filename s
session is currently active, the default directory is "c:/Program
Files/Agilent/OmniBER XM/config/<SessionType>". If you want to
restore a file from another location or if a test session is not currently
active, you must specify the full directory path including the drive
designator (c:/). For details, see AgtSaveSession. If a test session was
not active, one is opened using the specified configuration.

Objects string OR
list<string>

(Optional) A list of the objects whose settings you want to restore. By
default, if this parameter is left out, all objects are restored. To list the
objects saved in a file, use the command AgtListObjects. To build a
list of the objects you want to save, see the Example.
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession. You connect to a running test session using
AgtConnect and disconnect using AgtDisconnect.

AgtSaveSession can be used to save the configuration of the test session
to file. The configuration can then be restored from the given file, at a
later time, using the AgtRestoreSession command. If there is no running
test session, AgtRestoreSession opens a new test session and restores its
configuration from the supplied file. If there is a connection to a running
session, then AgtRestoreSession restores the configuration of that
session.
Error codes
 0 Success.
1 Bad argument.
Example
 To save, restore, or reset a test configuration
69

5 Commands
AgtSaveSession
Syntax
70
AgtSaveSession Filename ?Objects?
Synopsis
 Saves the current test configuration to a plain text file. Lets you quickly
restore the tester to the same configuration, make configuration changes
through the text file (eg. quick setup of many SUT IP addresses by
cutting and pasting from another source), or debug problems by looking
for anomalies in the text file. You may save all test settings or those for
specific objects only (eg. to restore or debug only a part of a test).
Parameters
ring The name of the file to which to save the configuration. Use the file
Filename st
extension .xml xml. By default, the file is saved in the directory
"c:/program files/agilent/omniberxm/config/<SessionType>/". To
save in another location, specify the full directory path along with the
drive designator (c:/). Examples of valid file names.
• config.xml
• c:/temp/config.xml
• c:/progra~1/agilent/omniberxm~1/config/ipperf~1/config.xml
• "c:/program files/agilent/omniber

xm/config/ipperformance/config.xml"
Rules when specifying directory paths:
• create the directory first if it doesn't already exist (non-existent

ones will not be created automatically)
• the drive and directory names are not case sensitive
• if a directory name contains a space or has > 8 characters, use

double quotes to enclose the whole directory path and file name
("x")

• shortcut: for directory names with spaces, remove the space and
append "~1" to the end of the name (eg. for "tst cf", specify
"tstcf~1")
API Programming Guide

Commands 5
• shortcut: for directory names with > 8 characters, truncate to 6
characters (after removing the spaces) and append "~1" (eg. for
"my configs", specify "myconf~1"); the ~1 (then ~2, ~3, etc.) is
used to uniquely identify directories with the same root name.

• if using double quotes to enclose a directory path, you may use
forward slashes (/) or backslashes (\) to separate directories; if not
using double quotes, you must use forward slashes (/)

Rules when specifying file names:
• new file names are case sensitive (existing ones are not)
• files that already exist will be overwritten without warning
• names may be more than 8.3 characters long
• if the file name contains a space, use double quotes to enclose the

whole directory path and file name ("x")

Objects string OR
list<string>

(Optional) A list of the objects whose settings you want to save. By
default, if this parameter is left out, all saveable objects are saved. To
list the saveable objects, use the command AgtListObjects. To build a
list of the objects you want to save, see the Example.
Details
API Programming Guide
You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession. You connect to a running test session using
AgtConnect and disconnect using AgtDisconnect.

AgtSaveSession can be used to save the configuration of the test session
to text file, to ease the setup of future tests. The state of the test session
can then be restored from the given file at a later time using the
AgtRestoreSession command.
Error codes
 0 Success.

1 Possible errors:

• Unable to open file for writing. Make sure the directory path and file
name adhere to the rules listed for the Filename parameter.

• Unable to save session while test is running. You must stop a test
before you can save its configuration.
Example
 To save, restore, or reset a test configuration
71

5 Commands
AgtSetActiveConnection
Syntax
72
AgtSetActiveConnection ConnectionID
Synopsis
 Selects the connection to which subsequent commands apply.
Parameters
long A connection ID previously returned by AgtConnect or
ConnectionID
AgtOpenSession.
Details
 An API client connects to a running test session using AgtConnect, or
creates a connection to a new session using AgtOpenSession. A client
can maintain multiple connections to different test sessions but there is
always only one active connection. The most recent call to AgtConnect
or AgtOpenSession sets the active connection implicitly. Use
AgtGetActiveConnection to determine the active connection and
AgtSetActiveConnection to select the active connection explicitly.
When finished, use AgtDisconnect to close a connection.
Error codes
 0 Success.

1 Invalid Connection ID. Connection ID must be as a result of a
AgtConnect or AgtOpenSession command.
Example
 To open a test session through the API
API Programming Guide

Commands 5
AgtSetServerHostname
Syntax
API Programming Guide
AgtSetServerHostname ?Hostname?
Synopsis
 Selects the local or remote test system to which subsequent commands
apply.
Parameters
string (Optional) The host computer name of the test system to which
Hostname
subsequent commands apply. You can determine a test system's host
computer name by right-clicking Network Neighborhood and
selecting Properties.
You may also specify the host's IP address. To determine a test
system's IP address, right-click Network Neighborhood, select
Properties, select the Protocols tab, and click Properties.
By default, if you leave out this parameter, the scripting environment
selects "localhost" and Tcl scripts operate on the local test system.
Details
 The test system software itself always runs on the Windows computer
that is connected to the test modules. However, you may control the
system remotely, from another Windows computer or UNIX-based
workstation connected to the test system via TCP/IP.

You can control the test system as part of a larger test configuration
comprising other test instruments and scripts which control the system
under test. You simply copy the small library of portable Tcl
commands, AgtClient, to the remote computer. By default, the scripting
environment selects "localhost" and Tcl scripts and commands operate
on the local

computer. To operate on a remote computer, call
AgtSetServerHostname. To determine the computer to which a script is
currently connected, call AgtGetServerHostname.
Error codes
 0 Success.
1 Unable to change hostname. Invalid host.
Example
 To open a test session through the API
73

5 Commands
AgtSetSessionLabel
Syntax
74
AgtSetSessionLabel SessionHandle SessionLabel
Synopsis
 Assigns a descriptive label to a test session, to identify that session
amongst several running sessions.
Parameters
e long A handle to the test session, as returned by AgtListOpenSessions or
SessionHandl
AgtOpenSession.

SessionLabel string A descriptive label for the test session. The default label is the name
of the user who opened the session; check the current label using
AgtGetSessionLabel. Use double quotes (") to enclose strings
containing spaces.
Details
 If the test system is simultaneously being used by multiple users, the
session label can be used to help identify the owner and/or purpose of
the test session.
Error codes

0 Success

1 Invalid session handle. Use AgtListOpenSessions to obtain valid
handles for currently running sessions, and AgtGetSessionLabel to get
the label currently used to identify each session.
Example
 To open a test session through the API
API Programming Guide

Agilent J7241A/42A OmniBER XM Network Simulator
API Programming Guide
6
Objects

“AgtTestController" on page 79

“AgtModuleManager" on page 82

“AgtSessionManager" on page 91

“AgtPortSelector" on page 95

“AgtTestSession" on page 104

“AgtXmSettings" on page 110

“AgtXmSonetTransportOverhead" on page 113

“AgtXmSdhSectionOverhead" on page 117

“AgtXmSonetError" on page 120

“AgtXmSdhError" on page 123

“AgtXmSonetAlarm" on page 124

“AgtXmSdhAlarm" on page 126

“AgtXmStatus" on page 127

“AgtXmSonetPathOverhead" on page 132

“AgtXmSdhPathOverhead" on page 139

“AgtXmPayload" on page 140

“AgtXmSonetStatistics" on page 141

“AgtXmSdhStatistics" on page 148

“AgtXmSonetChannelConfig" on page 156

“AgtXmSdhChannelConfig" on page 160

“AgtXmBurstControl" on page 162

“AgtOpticalInterface" on page 164

“AgtXmErrorEventLog" on page 166

“AgtXmAlarmEventLog" on page 167

“AgtStatisticsLog" on page 168

“AgtStatisticsList" on page 169

“AgtXmSequenceCapture" on page 170

“AgtXmSonetVtConfig" on page 172
75Agilent Technologies

76

6 Objects
“AgtXmSdhTuConfig" on page 174

“AgtXmSonetVtPathOverhead" on page 176

“AgtXmSdhTuLoPathOverhead" on page 179

“AgtXmLoPayload" on page 182

“AgtXmLoSettings" on page 183

“Supported Datatypes" on page 185
API Programming Guide

Objects 6
Type Definitions

Type Description Example

Unsigned char An 8-bit numeric value 1

Long 32 bit value, unsigned 12345678

Float 32 bit floating point 1.2345678

Double 64 bit floating point 1.23456e+78

BOOL Boolean value (TRUE/FALSE) TRUE

String String Type “one two three four five six”

Enumerated Types Enumerations as a string AGT_EXAMPLE_ONE

Lists A list of any of the above types. Defined as a
space separated list of items, enclosed by braces -
{}. All items within a list must be of the same
type

{1 2 3 4}
{1.0 2.0 3.0 4.0}
{TRUE FALSE TRUE FALSE}
{“one” “two” “three” “four”}
{ONE TWO THREE FOUR}
API Programming Guide 77

6 Objects
Quick Reference
Manage sessions
78
Manages the creation, connection/disconnection of test sessions.
Select ports
Reserves test ports for the current test session. As ports are added,
modules are locked for exclusive use by the session.
Control tests
Sets general parameters for a test, starts and stops testing, and gets test
information.
Control lasers
Turns on/off optical transmit lasers, selects a transmit/receive mode, and
selects the clock source.
Log statistics
Records selected statistics to a text file in real time.
API Programming Guide

Objects 6
AgtTestController
API Programming Guide
Syntax

AgtInvoke AgtTestController Method InParams -> OutParams
Methods
 SetTestMode Mode
GetTestMode -> Mode

SetTestDuration Duration
GetTestDuration -> Duration

SetSamplingInterval SamplingInterval
GetSamplingInterval -> SamplingInterval
GetSamplingIntervalLimits -> MinSeconds MaxSeconds

SetTrickleTime TrickleTime
GetTrickleTime -> TrickleTime
GetTrickleTimeLimits -> MinSeconds MaxSeconds

StartTest
StopTest

GetTestState -> TestState
GetStartTime -> StartTime
GetElapsedTime -> ElapsedTime
Synopsis
 Sets general parameters for a test; starts and stops testing; and gets test
information.
Parameters

Mode Enum Whether to test continuously or for a fixed

duration:
• AGT_TEST_CONTINUOUS: (Default) Run

the test until stopped, through the StopTest
method or the Stop button on the graphical
user interface.

• AGT_TEST_ONCE: Run the test for the given
Duration, or until the test is stopped
(whichever occurs first).

You cannot change this mode during a test; the
test state must be AGT_TEST_STOPPED.

Duration long Applies only for the AGT_TEST_ONCE test
mode) The duration of the test, in seconds. May
range from 1 to 604,800 seconds (that is, a week);
default is 60 seconds. You cannot change this
value during a test; the test state must be
AGT_TEST_STOPPED.
79

80

6 Objects
MinSeconds
MaxSeconds

long The minimum and maximum number of seconds
allowed for
• GetTestDurationLimits: a test
• GetSamplingIntervalLimits: a sampling

interval

TestState Enum Whether the test is in progress:
• AGT_TEST_STOPPED: The test is idle.
• AGT_TEST_STARTING: All ports are

preparing to start traffic generation and
statistics collection synchronously.

• AGT_TEST_RUNNING: Traffic generation
and statistics collection is in progress.

• AGT_TEST_STOPPING: Traffic generation
has stopped, but residual statistics collection is
continuing for the duration of the trickle time.

StartTime long The time of day when the test was started. Allows
other timestamps in the system (eg.
BufferOverflow, timestamps in capture records,
statistics results, etc.) to be correlated with time of
day information. The value of StartTime
represents the number of seconds since midnight,
January 1, 1970. Use AgtFormatTime to convert
to date and time-of-day format.

ElapsedTime long The time elapsed since the test was started, in
seconds.
Details
 When you start a test, the system synchronously starts generating traffic
and measuring statistics across all test ports. The test state progresses to
AGT_TEST_STARTING while all ports are being synchronized, and
then to AGT_TEST_RUNNING. When you stop a test, the system
synchronously stops generating traffic across all test ports. It then stops
measuring statistics after the trickle time has elapsed, so that frames in
transit can reach their destination test ports and be counted in statistics.
API Programming Guide

Objects 6

API Programming Guide
The test state progresses to AGT_TEST_STOPPING when traffic
generation stops, and then to AGT_TEST_STOPPED when
measurements stop.

There is a timeout of 15 seconds for both StartTest and StopTest. On
timeout, a list of the test modules that did not start or stop properly is
logged in the event log and the application exits with a fatal error. To
disable the timeouts, you must define the environment variable
AGT_SUSPEND_TEST_TIMEOUT (assign it any value).
Error Codes

0 Success.

1 Invalid operation:
• Test in progress: Cannot change this parameter while

there is a test in progress. Stop the test first, using the
method StopTest.

• Parameter out of range: The value you are trying to set is
outside the valid range.

• Not implemented: The SetTrickleTime method is not
currently implemented.
81

6 Objects
AgtModuleManager
82
Syntax

AgtInvoke AgtModuleManager Method InParams -> OutParams
Methods
 GetSystemState -> SystemState

RebootAllModules
UpdateModules
DisableAutoUpdate
EnableAutoUpdate
IsAutoUpdateEnabled -> IsEnabled

UseSingleModule SerialNumber
ListModules -> ModuleNumbers
ListAllModules -> SerialNumbers
GetSerialNumber ModuleNumber -> SerialNumber
GetModuleNumber SerialNumber -> ModuleNumber
GetModuleName SerialNumber -> ModuleName
GetNamedModule ModuleName -> SerialNumber
SaveModuleList
GetSavedModuleList -> SerialNumbers
ListNewModules -> SerialNumbers
ListMissingModules -> SerialNumbers

GetModuleDescription SerialNumber -> ModuleType
PortsInModule
GetPortType SerialNumber PortNumber -> PortType
GetPortName SerialNumber PortNumber -> PortName
GetNamedPort SerialNumber PortName -> PortNumber
GetNcpCount SerialNumber -> NcpCount
IsModuleSynchronized SerialNumber -> IsSynchronized
IsDummyModule SerialNumber -> IsDummyModule

IsChassisBlade SerialNumber -> IsChassisBlade
GetChassisNumber SerialNumber -> ChassisNumber
GetChassisSlotNumber SerialNumber -> ChassisSlotNumber
SetModuleAnnotation SerialNumber ModuleAnnotation
GetModuleAnnotation SerialNumber -> ModuleAnnotation
IsModuleClockMaster SerialNumber -> ModuleClockMaster

GetIpAddress SerialNumber NcpIndex -> IpAddress
GetPrimaryIpAddress SerialNumber -> IpAddress
GetHostIpAddress -> IpAddress
GetModuleState SerialNumber -> ModuleState
GetModuleLock SerialNumber -> SessionHandle
UnlockModule SerialNumber
RebootModule SerialNumber

IsShutdownRequired SerialNumber -> ShutdownRequired
ShutdownModule SerialNumber
API Programming Guide

Objects 6

API Programming Guide
FlashModuleLEDs SerialNumber
ShowIpAddresses
Summary
 Manages test modules, allowing you to perform the same diagnostics
and troubleshooting possible through the OmniBER XM Diagnostics
Tool.

Note: It is easier to diagnose problems through the Diagnostics Tool,
since it provides a visual, at-a-glance summary of the status of the tester
and its modules. This API support allows remote, automated,
customized diagnostics and provides a few additional functions
(indicated above by *). See Details for more information about the
supported methods.
Parameters
temState enum The current state of the tester:
Sys
• AGT_SYSTEM_READY: The tester does not

detect any problems with its connected test
modules.

• AGT_SYSTEM_UPDATE_PENDING: The
tester is waiting to update the module numbers.
When the tester detects a new module, it waits
for 10 seconds before numbering the modules.
Also, the tester cannot renumber the modules if
a test session has locked (that is, is using) any
modules. In this case, the tester waits until all
test sessions are closed before renumbering the
module numbers. For details, see To
troubleshoot module problems, A module's
MODULE LED is blank.

• AGT_SYSTEM_UPDATING: The tester is in
the process of numbering its connected test
modules.

• AGT_SYSTEM_UPDATE_FAILED: At least
one module could not be assigned an ID
number. See also To troubleshoot module
problems.
83

6 Objects
IsEnabled bool Indicates whether automatic module numbering is
enabled:
1 (default): Automatic numbering is on. This
means the Module Manager periodically checks
for newly added or removed test modules and
renumbers all the test modules accordingly. This
must be enabled for plug-and-play module
operation.
0: Automatic numbering is off. This is required to
use the method UseSingleModule, which uses one
specific module only and assigns that module the
number 1.

SerialNumber string The serial number of a test module. This number
is shown on a sticker at the rear of the module. If
you are simulating modules through Demo mode,
the number is "AGT_MODULE_x" where x
describes the type of module being simulated.
You can also obtain serial numbers through
AgtModuleManager, by calling the methods
ListAllModules or GetSerialNumber.

ModuleNumbers list<long> A list of numbers identifying the test modules that
are currently connected and powered up. Modules
are assigned incremental numbers, according to
their order on the Event daisy chain.

SerialNumbers list<string> A list of module serial numbers. A module's serial
number is shown on the physical test module, on a
sticker on the back panel. If you are simulating
modules through Demo mode, the number is
"AGT_MODULE_x" where x describes the type
of module being simulated.

ModuleNumber long string See AgtPortSelector for details about these
Parameters.

ModuleName enum
ModuleType long
PortNumber string
PortName enum
PortType
PortsInModule long The number of test ports in the test module. Use

this value if you do not want to determine the
value by checking against the above list of
possible module types.
84 API Programming Guide

Objects 6
IsSynchronized bool Indicates whether a test module needs to be
synchronized with its neighbors:
1: yes
0: no

IsChassisBlade bool Set to TRUE if the module is an OmniBER
module in a chassis.

ChassisNumber long The chassis number you wish to lock the event
line to.

ChassisSlotNumber long Returns the slot number the card is in. Note you
can also work this out from the module number
itself. For example, card 101 is in slot 1.

ModuleAnnotation string A string describing a module in the registry.

IsDummyModule bool Indicates whether a test module is being simulated
through Demo mode.
1: This module is being simulated.
0: This module is not being simulated.

IpAddress string The IP address of the first test port (Port A) in the
test module. The PC uses a DHCP server to assign
IP addresses dynamically to its test ports.
By default, the tester Ethernet card that connects
the test modules uses the IP address of 10.0.0.1
(subnet mask 255.0.0.0) and assigns addresses
within this subnet, starting with 10.0.0.2. You
may use different IP addresses if these addresses
interfere with addresses being used in your test
lab or corporate LAN. For details, see the User
Guide, “To Change the IP Address of the Hub
Card”.
API Programming Guide 85

6 Objects
ModuleState enum The current state of the test module:
• AGT_MODULE_READY: The module

booted successfully. Check the system state for
an Update pending condition.

• AGT_MODULE_LOCKED: The module is in
use and locked out by a test session. Note: If
modules are currently locked by a test session,
newly connected test modules will not be able
to determine their module ID numbers. The
Clock and Event lines are required to do this.
The new modules will have Module IDs of
zero. To renumber the modules, close the test
session that is locking the other modules.

• AGT_MODULE_REBOOTING: The module
is in the process of rebooting and should be
available soon. A module automatically
reboots after you unselect its ports from a test
session or close its test session. It might take
up to a minute for a module to reboot. If it
remains in the Rebooting state for more than
this, it may be failing its boot process. Check
the module's physical MODULE LED.

SessionHandle long A handle to the test session that is currently using
(that is, locking out) a test module.

ShutdownRequired bool Indicates whether a device's operating system
needs to be shut down before it can be powered
off
1: yes
0: no
:OmniBER XM modules do not need to be shut
down.
Details
86
AgtModuleManager allows you to:

• get the current state of the tester

• reboot all modules or a single module (Note: you cannot reboot a
module if it is currently in use by a test session)

• update module numbers (for example, after adding or removing
modules)
API Programming Guide

Objects 6

API Programming Guide
• disable automatic module numbering (for example, to use a single
module and assign it the number 1)

• use a single module for test purposes (Note: you must disable
automatic numbering, the module cannot be currently in use by a test
session)

• list the module or serial numbers of modules

• get a specific module's module or serial number

• save the current list of modules found in the system to the registry

• return the saved list of modules

• list the new modules that were not present the last time the list of
modules was saved

• list the missing modules that were present the last time the list of
modules was saved

• determine whether a module has the master clock, is a dummy
(simulated) module

• get the IP addresses of a modules' test ports

• get the current state of a module

• determine which test session has a lock on a module

• unlock a module that was not unlocked properly after its session
closed

• locate a module in a physical stack of modules, by either flashing its
module LED or scrolling the IP address of its test port A across the
LED

Details about individual methods:

GetSystemState: Return the current state of the system:
AGT_SYSTEM_READY, AGT_SYSTEM_UPDATE_PENDING,
AGT_SYSTEM_UPDATING. Modules can only be locked when the
system is in the READY state.

RebootAllModules: Reboot all modules. All modules must be
unlocked first.
87

88

6 Objects
UpdateModules: This command is issued to instruct the
ModuleManager to reallocate module numbers as a result of modules
being added and removed. If any modules are locked or rebooting, the
update will be deferred until the modules are either ready or marked as
failed.

DisableAutoUpdate: Disable automatic updating of module numbers.
The Module Manager will not automatically assign module numbers.

EnableAutoUpdate: Enable automatic updating of module numbers.

IsAutoUpdateEnabled: Is automatic updating of module numbers
enabled?

UseSingleModule: Instead of assigning module numbers to all
modules, assign the number 1 to a single module. If automatic updating
is enabled, or any modules are locked, this request will fail. For
manufacturing test.

ListModules: List all numbered modules.

ListAllModules: Return a list of all modules found in the test system.

GetSerialNumber: Return the serial number of a numbered module.

GetModuleNumber: Return the module number assigned to a module.
If no module number is assigned, return zero.

GetModuleName: Return the name of a module. May be blank.

GetNamedModule: Return the serial number of the module with the
specified name, provided that it is unique.

SaveModuleList: Saves the current list of modules found in the system
to the registry.

GetSavedModuleList: Return the saved list of modules.

ListNewModules: List modules in the system which were not there the
last time the list of modules was saved.

ListMissingModules: List modules which were in the system the last
time the module was saved, which are not there now.
API Programming Guide

Objects 6

API Programming Guide
GetModuleDescription: Returns the type of the module and the
number of ports available in that module. Providing the port count
enables scripting clients to discover the number of ports available
without having to hardcode details of specific module types.

GetPortType: Returns the physical interface type for the port (indexed
from 1 to N).

GetPortName: Returns the name of the port (may be blank).

GetNamedPort: Return the number of the port with the specified name.

GetNcpCount: Returns the number of NCPs in the module. Each NCP
may control more than one port.

IsModuleSynchronized: Return TRUE if the module is synchronized
with other modules.

IsDummyModule: Returns false if module is not a dummy module.

GetIpAddress: Returns the IP address of the given NCP.

GetPrimaryIpAddress: Returns the IP address of the primary NCP.

GetHostIpAddress: Returns the IP address of the host on the
OmniBER XM network.

GetModuleState: Return the current state of the given module.

GetModuleLock: Returns the session handle currently lock the module
for a given serial number.

UnlockModule: Force unlock of a module Used to provide a
mechanism so if for some reason the locks held by a particular test
session are not cleaned up.

RebootModule: Reboot a module. The module must be unlocked. Used
to provide a mechanism to reboot a module for diagnostic purposes if it
doesn't reboot automatically.

IsShutdownRequired: Check whether a module needs to be shut down
before powering off.

ShutdownModule: Shut down a module before powering it off. The
module will enter the AGT_MODULE_SHUTTING_DOWN state;
once it enters the AGT_MODULE_SHUTDOWN state, it's safe to
power off.
89

90

6 Objects
FlashModuleLEDs: Flashes power LEDs to yellow at 2 Hz for 5
seconds for module with given serial number.

ShowIpAddresses: Show the IP addresses of all modules on their LED
displays.
Error codes
 0 Success.

> 0 Bad argument.
Example
 % AgtInvoke AgtModuleManager GetSystemState
AGT_SYSTEM_READY
% AgtInvoke AgtModuleManager ListModules
1 2 3 4
% AgtInvoke AgtModuleManager ListAllModules
AU12345678 AU23456789
API Programming Guide

Objects 6
AgtSessionManager
API Programming Guide
Syntax

AgtInvoke AgtSessionManager Method InParams -> OutParams
Methods
 OpenSession SessionType SessionMode -> SessionHandle
CloseSession SessionHandle

ListSessionTypes -> SessionTypes
ListOpenSessions -> SessionHandles

GetSessionType SessionHandle -> SessionType
GetSessionPort SessionHandle -> SessionPort
GetSessionContext SessionHandle -> Context

SetSessionLabel SessionHandle SessionLabel
GetSessionLabel SessionHandle -> SessionLabel

GetSessionPid SessionHandle -> ProcessId

GetNumGuiConnections SessionHandle SessionType ->
NumConnected
GetMaxGuiConnections SessionType -> MaxConnections
SetMaxGuiConnections SessionType MaxConnections
Summary
 Manages test sessions. Note: Most of these methods operate on the
current test session. To change the current session, call
AgtSetActiveConnection and pass the desired session handle. (The
session's handle number is also used as the connection's ID number.) To
list the handles for the active sessions, call AgtListOpenSessions.
91

6 Objects
Parameters
92
SessionType string The type of test session. For a listing of possible
types, see AgtOpenSession.

SessionMode enum Whether a session is being used for full testing or
configuration only.

• AGT_SESSION_ONLINE: You select this
mode if you are doing more than just
configuring a test, for example, if you also
want to generate traffic and view statistics.
This reserves the modules you select on a
subsequent call to AgtPortSelector, thus
locking out anyone else who might attempt to
use the same modules to generate traffic. The
test session will actively connect to all selected
test ports and download test configurations.
Note: The test modules do not need to be
connected as you can simulate connected test
modules using the system variable
AGT_DUMMY_MODULES.

• AGT_SESSION_OFFLINE: Select this mode
if you are simply configuring tests. This
neither reserves the test modules nor locks out
anyone who may want to use the GUI or API
to run tests on the same modules. Your test
configurations are stored locally on the PC and
not downloaded to the test ports.

The mode you select affects the software
launched, is selected when you first open a
session, and cannot be changed afterwards

SessionHandle long If you called OpenSession, this is a handle to the
newly opened session. If you called GetHandle,
this is the handle to the current test session.

To change the current session, call
AgtSetActiveConnection and pass the desired
session handle. (The session's handle number is
also used as the connection's ID number.) To list
the handles for the active sessions, call
AgtListOpenSessions.
API Programming Guide

Objects 6

API Programming Guide
Filename string The name of the file used to store the test
configuration data. Test configuration files should
have the extension .xml.
The many different rules for specifying the
directory path and file name are detailed for
AgtSaveSession.

SessionTypes list<string> A list of the types of test sessions supported by
your tester.

SessionHandles list<long> A list of handles to the test sessions currently
open.

SessionPort long The port number that the session is currently
waiting on for scripting connections.

Context enum How the current test session was opened.
Currently, the only context supported is:

• AGT_SESSION_EXE: The session is running
as standalone, detached executable program.
Advantages: Multiple GUI clients can access
the same test session (that is, its test ports,
traffic definitions, real-time statistics). You
can exit the GUI without closing its test
session or terminating any attached GUI or
API clients.

This context is no longer supported:

• AGT_SESSION_DLL: The session is running
as a DLL hosted by the GUI. When the GUI
closes, the test session closes automatically.
Advantage: Test sessions locking test modules
are not inadvertently left running in the
background.

SessionLabel string A descriptive label for the current test session.
The default label is

• SYSTEM if the session was opened through
the API

• user login name (for example, "administrator")
if opened through the GUI

Use double quotes (") to enclose strings
containing spaces.
93

94

6 Objects
ProcessId long If there are several users running test sessions and
you need to kill a session through the Windows
Task Manager, you can use this to identify a
session's process ID.
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession. You connect to a running test session using
AgtConnect and disconnect using AgtDisconnect. You can set up
multiple connections to different test sessions but there is always only
one active connection

AgtCloseSession closes a currently open test session, and all
connections to that session. The test session associated with the
graphical user interface is automatically closed when the graphical user
interface exits and should not be closed by a script.

By default, the tester allows one GUI to connect to each test session.
This prevents others from accessing and modifying your tests. You can
reset this using the SetMaxGuiConnections method.
Error codes

0 Success
1 Bad argument
Example
 # check the current maximum number of GUI users and set it to
2
% AgtInvoke AgtSessionManager GetMaxGuiConnections
IpPerformance
1
% AgtInvoke AgtSessionManager SetMaxGuiConnections
IpPerformance 2
% AgtInvoke AgtSessionManager GetMaxGuiConnections
IpPerformance
2
% AgtInvoke AgtSessionManager GetNumGuiConnections 1
IpPerformance
1

API Programming Guide

Objects 6
AgtPortSelector
API Programming Guide
Syntax

AgtInvoke AgtPortSelector Method InParams -> OutParams
Methods
 ListModules -> ModuleNumbers
GetLastModule -> Module
GetModuleDescription ModuleNumber -> ModuleType
PortsInModule
GetModuleName ModuleNumber -> ModuleName
IsModuleSynchronized ModuleNumber -> Synchronized
IsChassisBlade ModuleNumber -> IsChassisBlade
GetChassisNumber ModuleNumber -> ChassisNumber
GetChassisSlotNumber ModuleNumber -> ChassisSlotNumber

GetPortType ModuleNumber PortNumber -> PortType
GetPortLabel ModuleNumber PortNumber -> PortLabel
GetPortName ModuleNumber PortNumber -> PortName

ListModuleTypes ModuleNumber -> ModuleTypes
SetModuleType ModuleNumber ModuleType
GetModuleLimit -> Limit
IsModuleSupported ModuleNumber -> IsSupported
ListSessionModuleTypes ModuleNumber -> ModuleTypes

GetModuleState ModuleNumber -> ModuleState
GetModuleLock ModuleNumber -> SessionLock
GetChassisUpstreamLock ChassisNumber -> SessionLock
GetChassisDownstreamLock ChassisNumber -> SessionLock
GetLockedModuleList -> ModuleNumbers
GetLockedModules -> FirstModule LastModule
ListRequiredModules SelectedModules -> RequiredModules
ListUnavailableModules SelectedModules -> UnavailableModules

AddPort ModuleNumber PortNumber -> Handle
AddPorts PortLabels -> PortHandles
AddNamedPort ModuleName PortName -> PortHandle
AddPortsWithLock PortLabels ModuleNumbers -> PortHandles
RemovePort PortHandle
RemovePorts PortHandles
ListPorts -> PortHandles
FindPortHandle ModuleNumber PortNumber -> PortHandle
FindPortHandleFromLabel PortLabel -> PortHandle
GetPortDetails PortHandle -> ModuleNumber PortNumber
GetPortLabelFromHandle PortHandle -> PortLabel
IsDummyPort PortHandle -> IsDummyPort

AddGroup Handles -> GroupHandle
RemoveGroup GroupHandle
ListGroups -> GroupHandles
ListPortsInGroup GroupHandle -> PortHandles
95

96

6 Objects
AddModule ModuleType
RemoveModule ModuleNumber
ListPortsInModule ModuleNumber -> PortHandles
SetPortComment PortHandle PortComment
GetPortComment PortHandle -> PortComment
GetSessionType -> SessionType
Summary
 Reserves test ports for the current test session. As ports are added,
modules are locked for exclusive use by the session.
Parameters

Depends on the method being called:
FirstModuleNumber
LastModuleNumber

long • GetLastModule: The last test module currently connected to the
test system. Use to list all modules that are in the test system.

• GetLockedModules: The first and last test modules, of a range
of consecutive modules, that have been locked for exclusive use
by this test session.

Modules are assigned incremental numbers, from 1 to
LastModuleNumber, according to their order on the Event daisy
chain. This number is displayed on the left side of the module's

front panel

Test Cards are assigned chassis and card numbers, both starting
from 1, according to their order on the Event daisy chain. This
number is displayed on the left side of the card's front panel, using
the format XXYY, where XX is the chassis number and YY the
card number, for example 103 is the bottom left card in chassis 1.

Pass the module and port numbers to the method AddPort, to
identify and reserve test ports.
API Programming Guide

Objects 6
ModuleNumber long The number of a particular test module. Modules are assigned
incremental numbers, from 1 to LastModuleNumber, according to
their order on the Event daisy chain. (See above diagram.)
• A test module displays this number on the left side of its front

panel.
A module number of 0 indicates that module numbers have not yet
been assigned.

ModuleType enum The type of test module:
AGT_CARD_ONEPORT_OMNIBERXM_10G_SONET_1550
AGT_CARD_ONEPORT_OMNIBERXM_10G_SONET_1310
AGT_CARD_TWOPORT_OMNIBERXM_2G5_SONET_1550
AGT_CARD_TWOPORT_OMNIBERXM_2G5_SONET_1310
AGT_CARD_TWOPORT_OMNIBERXM_622M_SONET_1550
AGT_CARD_TWOPORT_OMNIBERXM_622M_SONET_1310

PortNumber long The number assigned to a test port.
• For each test module, the port labeled “A” is assigned port

number “1”, “B” is assigned “2”, etc.

PortType enum The type of test port:
AGT_PORT_OMNIBERXM_10G_SONET_1550
AGT_PORT_OMNIBERXM_10G_SONET_1310
AGT_PORT_OMNIBERXM_2G5_SONET_1550
AGT_PORT_OMNIBERXM_2G5_SONET_1310
AGT_PORT_OMNIBERXM_622M_SONET_1550
AGT_PORT_OMNIBERXM_622M_SONET_1310

NumberOfPorts long The number of test ports on the test module.

IsSynchronized bool Indicates whether a test module needs to be synchronized with its
neighbors:
1: yes
0: no

IsSupported bool Indicates whether a test module is supported by the current session
type:
1: yes
0: no
Generally, most session types support most module types.

ModuleLimit long The maximum number of test modules supported by this type of
session. Returns zero if there is no maximum.
Generally, the number of modules is not limited by a test session
type, only by the hardware platform. Thus, most session types
return a value of zero.
API Programming Guide 97

6 Objects
ModuleState enum The current state of this module:
• AGT_MODULE_READY: The module rebooted successfully

and is available for use.
• AGT_MODULE_LOCKED: The module is locked by a test

session. Use GetModuleLock to determine which test session
has a lock on the module, and RemovePort to release a session's
lock on a port (and thus the module).

• AGT_MODULE_REBOOTING: The module is rebooting.
• AGT_MODULE_FAILED: The module failed to reboot.
When a test session locks a module, the module state changes from
READY to LOCKED. When the test session unlocks the module,
its state changes from LOCKED to REBOOTING. After the
module finishes rebooting, its state changes to either READY (if
successful) or FAILED (if it fails to reboot).

SessionHandle long A handle to the test session holding a lock on this module. When a
session reserves a test port, it locks the entire test module. A
session handle of zero indicates an unused module. To get a
descriptive text label for the session handle, use the command
AgtGetSessionLabel.

ModuleNumbers list<long> A list of module numbers. These numbers are described above in
ModuleNumber.

DummyModuleType enum Same as ModuleType above, but is used to add simulated test
modules to an offline test session. This may be used to configure
tests on a PC that does not have physically connected test modules,
or to demo a system with a certain number and types of test
modules. To launch an offline test session, use the command
AgtOpenSession or the object AgtTestSession.

DummyModuleNumbe
r

long Same as ModuleNumber above, but is used to remove simulated
test modules in an offline test session. This removes the specified
module and all subsequent modules (that is, if you specify module
#n and there are N modules, this removes modules #n to N in the
simulated chain).

PortHandle long A handle to a test port. The handle returned by the method AddPort
is used to identify the test port to subsequent commands and
methods.
98 API Programming Guide

Objects 6
PortHandles list<long> A list of port handles. The use depends on the method:
• AddPorts: A list of handles to the ports that have been added to

a test session. The handles are used to identify test ports to
subsequent commands and methods.

• RemovePorts: A list of handles to the ports to be removed.
• ListPorts: The ports that have been added so far to the current

test session.
• AddGroup: The ports to define as a group. You may then pass

the returned group handle to methods requiring a port handle, to
configure a group of ports the same way (that is, calling the
method only once). This group definition lasts for the duration
of the test session. To create a list of handles to pass to the
method, use the Tcl command list (for example, “[list handle1
handle2 ...]”—see this sample code). Note: You cannot keep
adding ports to a group, each call creates a new group.

• ListPortsInGroup: The ports that are in a group.

IsDummyPort bool Indicates whether the test port is being simulated by an _ipl.exe
process on the host PC:
• 1: Test port is being simulated.
• 0: Test port is not being simulated.
Note: The returned value is always 0 if you are using the test port
in an offline test session. Offline sessions do not actively
communicate with actual or simulated test ports.

GroupHandle

GroupHandles

long

list<long>

The handle(s) to a group(s) of ports.

A group consists of a number of port handles. You use a group to
configure a number of test ports with the same configuration in a
single action.

IsChassisBlade bool Set to TRUE if the module is a module in the OmniBER XM
chassis).

ChassisNumber long The chassis number you wish to lock the event line to.

ChassisSlotNumber long Returns the slot number the card is in. Note you can also work this
out from the module number itself. For example, card 101 is in slot
1.

PortLabel string A label identifying a test port (as used in the GUI).

RequiredModules list<long> The list of modules that must be selected in addition to those you
actually need for the test.
API Programming Guide 99

6 Objects
UnavailableModules list<long> The list of modules that you have requested but are not available
because they are in use by another session.

SelectedModules list<long> The list of modules you would like to use in your test.

PortLabels list<string> A list of port labels as described in PortLabel above.

SessionType enum The type of test session currently running. One of those listed in
AgtOpenSession.

PortComment string Provides information on how to configure the port. For example,
"Connects to 192.10.3.2". The comment is saved to the
configuration file and can be retrieved when restoring a session
using AgtTestSession GetSavedPortComment
Details
100
You reserve test ports for the current test session so that others using the
GUI or other API clients do not use the ports and compromise your test
results. Once you reserve a test port using AddPort or AddPorts, the
entire module becomes locked to the test session. Modules are locked in
contiguous blocks. Hence, if you reserve ports 1A and 4A, then modules
one through four are locked to the current test session. Ports can be
released using RemovePort. To list all modules available in the test
system, use the ListModules method.

Details about individual methods:

ListModules: Return the list of modules currently connected to the test
system. This includes all OmniBER XM Test Modules.

GetLastModule: Return the number of the last module currently
connected to the test system.

GetModuleDescription: Return details of the module with the given
module number. Returns the type of the module and the number of ports
available in that module. Providing the port count enables clients to
discover the number of ports available without having to hardcode
details of specific module types.

GetModuleName: Return the host name of a particular OmniBER XM
module.

IsModuleSynchronized: Return true if the module must be
synchronized with its neighbors.
API Programming Guide

Objects 6

API Programming Guide
IsChassisBlade: Return TRUE for all OmniBER XM modules.

GetChassisNumber: For a chassis blade, returns its chassis number.

GetChassisSlotNumber: For a chassis blade, returns its slot number
within the chassis.

GetPortType: Return the type of the specified port on the module with
the given module number. The ports on each module are numbered from
1 to N, where N is the port count returned by GetModuleDescription.

GetPortLabel: Return the label identifying a specified port (e.g. 1A,
101/1).

GetPortName: Return the name of the specified port.

IsModuleSupported: Returns true if the module is supported by this
session type. Generally, most session types support most module types.

ListModuleTypes: Return a list of the module types supported by the
module.

SetModuleType: Set the current module type. This method has no
effect if the specified module type is the one currently exhibited by the
module. The module type can only be set if the module is not currently
owned by a test session.

GetModuleLimit: If the number of modules supported by this session
type is limited, return the limit. If no limit is defined, return 0.
Generally, the number of modules is not limited by a test session type,
only by the hardware platform. Thus, most session types return a value
of zero.

GetModuleState: Return the current state of the given module.

GetModuleLock: Returns the session ID of the test session holding a
lock on the given module number. Returns zero if there is no lock on the
given module.

GetLockedModuleList: Returns a list of the modules locked by this
session. This replaces the obsoleted GetLockedModules which simply
returned a range of module numbers (locked modules are no longer
necessarily contiguous).
101

102

6 Objects
GetChassisUpstreamLock: Returns the session ID of the test session
which has locked this chassis for upstream synchronization. Returns
zero if there is no lock.

GetChassisDownstreamLock: Returns the session ID of the test
session which has locked this chassis for downstream synchronization.
Returns zero if there is no lock.

ListRequiredModules: Given a list of modules to be selected, find any
additional modules which must also be selected to preserve
synchronization across ports.

ListUnavailableModules: Given a list of modules to be selected, find
any modules which are not available to be selected.

AddModule: Add a new simulated module for use in Demo mode. The
module will be added to the end of the list. Can only be used in
OFFLINE mode.

RemoveModule: Remove the simulated module at the location
determined by ModulePosition where the first module is number 1 and
the last module, number N. All subsequent modules will be removed as
well (i.e., if module 3 is removed, module 3 to module N-1 are
removed). Can only be used in OFFLINE mode.

AddPort: Add a test port to the current test session. Return a handle for
the port given by the module number and port number. The port number
correspond to the lettered ports on the units. For example, Port A is 1,
port B is 2. So to add module 5, port B is "AddPort 5 2". This handle can
be used anywhere in the remainder of the test system to refer to the test
port. When a port is added to the test session, it is automatically locked.
To unlock a module, the ports must be removed from the test session.
The operation will fail if the module is locked in another session. A port
cannot be added to the system while a test is running.

AddPorts: Add a number of test ports to the current test session.
AddPorts takes a list of port names (e.g. "1A" or "101/1") instead of a
module number and port number.

AddNamedPort: Add a test port to the current test session. Return a
handle for the port given by the module name and port name.
API Programming Guide

Objects 6

API Programming Guide
RemovePort: Remove a test port from the current test session. When a
port is removed all state associated with the port will be lost. If the port
is subsequently added again, all associated parameters will have
returned to their defaults as if the port was part of a new session. A port
cannot be removed from the system while a test is running.

RemovePorts: Remove a number of test ports from the current test
session. Faster than removing each port individually, since the event
lines must be re-segmented whenever a module is removed from the test
session, and this can take a couple of seconds each time.

GetPortDetails: Return the module number and port letter for a given
port handle.

IsDummyPort: Return TRUE if the port is a dummy port (an instance
of the embedded software running on the host PC).

ListPorts: List ports that are part of the current test session.

AddGroup: Define a new port group consisting of a number of port
handles. Used to configure a number of test ports with the same
configuration in a single transaction Accepts a list of port handles and
returns a group handle.

RemoveGroup: Remove a particular port group definition. Otherwise a
group definition will remain for the duration of the test session.

ListGroups: List all groups currently defined.

ListPortsInGroup: List all the port handles that comprise a currently
defined group.
Error codes
 0: Success.

> 0: Invalid Handle: If PortHandle does not correspond to an active
port as assigned by AgtPortSelector; if the ModuleNumber or
PortNumber is out of range.
103

6 Objects
AgtTestSession
Syntax
104
AgtInvoke AgtTestSession Method InParams -> OutParams
Methods
 The methods marked with * are also provided as commands, for your
convenience. (These commands are simply shortcuts to the methods, but
do not require the extra AgtInvoke command.) Note: The word
"Interfaces" used in method names below simply refers to "Objects".
OpenSession SessionType SessionMode -> SessionHandle *
CloseSession *
CloseSessionForce
GetHandle -> SessionHandle
GetType -> SessionType
GetMode -> SessionMode
GetContext -> SessionContext
SaveSession FileName *
RestoreSession FileName *
RestoreSessionOnPorts FileName PortLabels
ListSaveableInterfaces -> SaveableObjects
GetSaveableInterfaceDescription Object -> ObjectDescription
ListDependencies Object -> DependentObjects
ListAllDependencies Object -> DependentObjects
ListSavedInterfaces FileName -> SavedObjects *
ListSavedPorts FileName -> PortLabels
GetSavedPortType FileName PortLabel -> PortType
GetSavedPortComment FileName PortLabel -> PortComment
SaveInterfaces FileName ObjectsToSave *
RestoreInterfaces FileName ObjectsToRestore *
ResetSession *
ResetInterfaces ObjectsToReset *
GetNumPorts -> NumPorts

The following methods are no longer supported:
SetLabel SessionLabel *
GetLabel -> SessionLabel *

Use the commands AgtSetSessionLabel, AgtGetSessionLabel instead.
Summary
 Manages test sessions.

Note: Most of these methods operate on the current test session. To
change the current session, call AgtSetActiveConnection and pass the
desired session handle. (The session's handle number is also used as the
connection's ID number.)

To list the handles for the active sessions, call AgtListOpenSessions.
API Programming Guide

Objects 6
Parameters
API Programming Guide
nType string The type of test session. For a listing of possible
Sessio
types, see AgtOpenSession.

SessionMode enum Whether a session is being used for full testing
or configuration only.
• • AGT_SESSION_ONLINE: You select this

mode if you are doing more than just
configuring a test, for example, if you also
want to generate traffic and view statistics.
This reserves the modules you select on a
subsequent call to AgtPortSelector, thus
locking out anyone else who might attempt
to use the same modules to generate traffic.
The test session will actively connect to all
selected test ports and download test
configurations. Note: The test modules do
not need to be connected as you can simulate
connected test modules using the system
variable

AGT_DUMMY_MODULES.
• • AGT_SESSION_OFFLINE: Select this

mode if you are simply configuring tests.
This neither reserves the test modules nor
locks out anyone who may want to use the
GUI or API to run tests on the same
modules. Your test configurations are stored
locally on the PC and not downloaded to the
test ports.

The mode you select affects the software
launched, is selected when you first open a
session, and cannot be changed afterwards.

SessionHandle long If you called OpenSession, this is a handle to
the newly opened session. If you called
GetHandle, this is the handle to the current test
session.
To change the current session, call
AgtSetActiveConnection and pass the desired
session handle. (The session's handle number is
also used as the connection's ID number.) To
list the handles for the active sessions, call
AgtListOpenSessions.
105

6 Objects
SessionContext enum How the current test session was opened.
Currently, the only context supported is:
• • AGT_SESSION_EXE: The session is

running as standalone, detached executable
program. Advantages: Multiple GUI clients
can access the same test session (that is, its
test ports, traffic definitions, real-time
statistics). You can exit the GUI without
closing its test session or terminating any
attached GUI or API clients.

This context is no longer supported:
• • AGT_SESSION_DLL: The session is

running as a DLL hosted by the GUI. When
the GUI closes, the test session closes
automatically. Advantage: Test sessions
locking test modules are not inadvertently
left running in the background.

FileName string The name of the file used to store the test
configuration data.
Test configuration files should have the
extension .xml.
The many different rules for specifying the
directory path and file name are detailed for
AgtSaveSession.

SaveableObjects list<string> A list of the test components (that is, API
objects) that may be saved, through the GUI or
AgtSaveSession. When you save a test
configuration, all the settings associated with
these objects are saved.

Object string The name of a saveable API object, as returned
by the method ListSaveableObjects.

DependentObjects list<string> A list of the API objects that are automatically
saved when you save the specified Object
(through the GUI or AgtSaveSession).
The methods are
• • ListDependencies: Lists all objects on

which the specified object directly depends.
• • ListAllDependencies: Lists all objects on

which the specified object depends,
including all their dependencies, and so on
recursively.
106 API Programming Guide

Objects 6
SavedObjects list<string> A list of the objects that were saved into the
specified test configuration file.

ObjectDescription string A brief description of the object being saved or
restored.

ObjectsToSave
ObjectsToRestore
ObjectsToReset

list<string> A list of the objects to save, restore, or
reset (that is, to default values).

SessionLabel string A descriptive label for the current test session.
The default label is
• • "SYSTEM" if the session was opened

through the API
• • user login name (for example,

"administrator") if opened through the GUI
Use double quotes (") to enclose strings
containing spaces.

NumPorts long The number of test ports used by the current test
session.

PortLabel string A port label, for example "1A" or "103/2".

PortLabels list<string> A list of port labels. For example, the list "2A
2B 101/1 101/2" might be saved. The session
might be restored on the list
"101/1 101/2 102/1 102/2". Each label is
delimited by a space.

PortType string The type of port, as returned by AgtPortSelector
GetPortType method.

PortComment string A comment, associated with a port, providing
information on configuring the port. For
example "Connect to interface X on omniber
xm Y".
API Programming Guide
Details
 You interact with the test system through a test session, which is simply
an instantiation of the test system software. Test sessions can be
initiated by launching the graphical user interface or by calling the
command AgtOpenSession.
107

108

6 Objects
You connect to a running test session using AgtConnect and disconnect
using AgtDisconnect. You can set up multiple connections to different
test sessions but there is always only one active connection.

AgtCloseSession closes a currently open test session, and all
connections to that session. The test session associated with the
graphical user interface is automatically closed when the graphical user
interface exits and should not be closed by a script.

Details about individual methods:

OpenSession: Opens a session of the given type. The available types
and modes described for the command AgtOpenSession. The mode
controls whether the session is connected to actual modules (ONLINE)
or just storing the configuration locally (OFFLINE).
CloseSession: Closes this test session but fails if a GUI client is
attached to it or a test is starting.

CloseSessionForce: Closes this test session, regardless of these
conditions.

GetHandle: Returns a handle for this session. Returns zero if the
session is not currently open. GetType: Returns the type of this session.
GetMode: Returns the current mode of this session. GetContext:
Returns the context of the current test session.

ListSaveableInterfaces: Returns a list of the interfaces in the test
session that can be saved.
ListDependencies: For a given interface name, returns a list of all of
the interfaces on which the interface depends directly.

ListAllDependencies: For a given interface name, returns a list of all of
the (saveable) interfaces on which the interface depends, including all of
their dependencies, and so on recursively.

GetSaveableInterfaceDescription: For a given interface name, returns
a string description of the interface. SaveInterfaces: Saves the
requested list of interfaces in the test session All dependents will be
automatically saved.

SaveSession: Saves all saveable state in the test session to the requested
filename. RestoreSession: Restores the state of the test session from the
supplied file. For each interface whose persistent state exists in the
given file, the session will reset its state to its default prior to restoring
the state from file. The session will be restored on the original ports. Use
API Programming Guide

Objects 6

API Programming Guide
RestoreSessionOnPorts to restore on a different set of ports. NOTE:
the number of ports must equal the original list. ResetSession: Resets
the test session to its default state.

ListSavedInterfaces: Returns a list of the interfaces saved in the
supplied configuration file Allows the contents of the file to be
summarized before restoring. RestoreInterfaces: Restores the state of
the test session from the supplied file The client lists the interfaces to
restore For each interface whose persistent state exists in the given file,
the session will reset its state to its default prior to restoring the state
from file. ResetInterfaces: Resets a subset of the test session
configuration The client lists the interfaces to reset For each interface
the session will reset its state to its default prior to restoring the state
from file.

GetNumPorts: Returns the number of ports used by this test session.
Error codes
 0 Success.

1 Bad argument.
109

6 Objects
AgtXmSettings
110
This interface is common to SONET and SDH.
Summary
 This interface is used to configure the current signal format. Also sets
the SONET/SDH scrambler on/off. All the functions are available in
Terminal mode but only the Receiver functions are available in Thru
Mode.

Syntax

AgtInvoke AgtXmSettings Method InParams -> OutParams
Methods
 SetTxSignalStandard PortHandle SignalStandardMode
GetTxSignalStandard PortHandle → SignalStandardMode

SetTxLineRate PortHandle TxLineRate
GetTxLineRate PortHandle → TxLineRate

SetTransmitterMode PortHandle TransmitterMode
GetTransmitterMode PortHandle → TransmitterMode

SetScramblerState PortHandle ScramblerState
GetScramblerState PortHandle → ScramblerState

SetTxLineRateOffset PortHandle LineRateOffset
GetTxLineRateOffset PortHandle → LineRateOffset
GetValidTxLineRateOffsetRange PortHandle → MinOffset
MaxOffset

Note: Only an information function. No "Set" functionality.

Receiver Functions
SetRxSignalStandard PortHandle SignalStandardMode
GetRxSignalStandard PortHandle → SignalStandardMode

SetRxLineRate PortHandle RxLineRate
GetRxLineRate PortHandle à RxLineRate

SetDescramblerState PortHandle DescramblerState
GetDescramblerState PortHandle -> DescramblerState

SetMeasurementAnalysisType PortHandle AnalysisType
GetMeasurementAnalysisType PortHandle -> AnalysisType

SetEnhancedRdipModeForAnalysis PortHandle State
SetEnhancedRdipModeForAnalysis PortHandle -> State

SetMonitorMode PortHandle MonitorMode
GetMonitorMode PortHandle -> MonitorMode

Note: Only applies in Thru mode
API Programming Guide

Objects 6
Parameters
API Programming Guide
ode Enum EAgtXmSignalStandard
SignalStandardM
AGT_XM_SIGNAL_STANDARD_SONET
AGT_XM_SIGNAL_STANDARD _SDH

Rx/TxLineRate Enum EAgtXmLIneRate
AGT_XM_LINE_RATE_10G_SONET
AGT_XM_LINE_RATE_10G_SDH
AGT_XM_LINE_RATE_2G5
AGT_XM_LINE_RATE_622M
AGT_XM_LINE_RATE_155M

LineRateOffset long The offset added to each timestamp, in parts per
million (ppm). Default is 0, valid range varies per
blade

MinOffset long The minimum valid LineRate offset value (in
ppm) for this port

MaxOffset long The maximum valid LineRate offset value (in
ppm) for this port

PortHandle long A handle to a test port, as returned by
AgtPortSelector

ScramblerState Bool Indicates whether the test port is currently
scrambling its transmitted SONET/SDH frames:·
• 1: Scrambler is on.
• 0: Scrambler is off.

DescramblerState Bool Indicates whether the test port is currently
descrambling SONET/SDH frames from the
SUT:
• 1: Descrambler is on.
• 0: Descrambler is off.

MonitorMode Enum
EAgtXmMonitorMode

AGT_XM_MONITOR_TRANSPARENT
AGT_XM_MONITOR_INTRUSIVE

AnalysisType Enum AGT_XM_ANALYSIS_TYPE_G828
AGT_XM_ANALYSIS_TYPE_GR253
AGT_XM_ANALYSIS_TYPE_NONE
Details
 The SDH signal is scrambled according to G.707. The scrambler is
frame-synchronous and uses an X7+X6+1 polynomial, XORed with the
data.
111

112

6 Objects
For setting LineRate, the valid options are dependent upon the blade
being used. In particular 10G blade doesn't support any other rate, while
2.5G blade supports 622 Mbps & 155 Mbps.
Error codes

0 Success
>0 Invalid Handle: If PortHandle does not correspond to an

active port as assigned by AgtPortSelector.
API Programming Guide

Objects 6
AgtXmSonetTransportOverhead
Summary
API Programming Guide
This interface gets the value of section and line (Transport) overhead
bytes being used in transmitted and received SONET frames.
Sets the values of certain transmitted bytes contained in the first STS-3
channel, except for B1, B2, J0 and H1 - H3. All the functions are
available in Terminal mode but only the Receiver functions are
available in Thru Mode.

Syntax

AgtInvoke AgtXmSonetTransportOverhead Method InParams ->
OutParams
Methods
 GetTxOverheadByteMode PortHandle Sts1Pos Byte -> ByteMode

Gets the Mode of the overhead byte. The Mode indicates whether the byte can be edited,
or whether its value is fixed.

SetAllTxOverheadBytesToDefaultValue PortHandle
SetTxOverheadByteToDefaultValue PortHandle Sts1Pos Byte

SetTxOverheadByte PortHandle Sts3Pos Byte Sts1Col Value
GetTxOverheadByte PortHandle Sts3Pos Byte Sts1Col -> Value

SetSts3TxOverheadBytes PortHandle Sts3Pos
OverheadBytesSnapshot
GetSts3TxOverheadBytes PortHandle Sts3Pos ->
OverheadBytesSnapshot

SetTxAps PortHandle K1 K2
GetTxAps PortHandle -> K1 K2

SetTxSectionTraceMessageToDefault PortHandle

Note:Thru Mode has only the following functions:
SetTxSectionTraceLength PortHandle TraceLength
GetTxSectionTraceLength PortHandle -> TraceLength

SetTxSectionTraceMessage PortHandle SectionTrace
GetTxSectionTraceMessage PortHandle -> SectionTrace

Receiver Functions:

GetRxOverheadByte PortHandle Byte Sts1Col -> Sts3Pos Value
GetSts3RxOverheadBytes PortHandle -> Sts3Pos
OverheadBytesSnapshot
Returns data from the currently selected STS3.
113

114

6 Objects
GetRxAps PortHandle -> K1 K2

GetRxSectionTraceMessage PortHandle -> SectionTraceMessage

GetRxSectionTraceLength PortHandle -> Length

SetCurrentRxSts3 PortHandle Sts3Pos
GetCurrentTxSts3 PortHandle -> Sts3Pos
Parameters
PortHandle long A handle to a test port, as returned by AgtPortSelector

Byte Enum
EAgtXmSonet
Transport
OverheadByte

An overhead byte in SONET/SDH frames:
For descriptions of the overhead bytes, see this quick
reference on SONET/SDH frame header. You can get
the value of any byte in transmitted and received
frames. The non-editable bytes in transmitted frames are
set to either a fixed or automatically calculated (correct)
value.
• AGT_XM_SONET_A1
• AGT_XM_SONET_A2
• AGT_XM_SONET_J0
• AGT_XM_SONET_Z0
• AGT_XM_SONET_B1
• AGT_XM_SONET_E1
• AGT_XM_SONET_F1
• AGT_XM_SONET_D1
• AGT_XM_SONET_D2
• AGT_XM_SONET_D3
• AGT_XM_SONET_H1
• AGT_XM_SONET_H2
• AGT_XM_SONET_H3
• AGT_XM_SONET_B2
• AGT_XM_SONET_K1
• AGT_XM_SONET_K2
• AGT_XM_SONET_D4
• AGT_XM_SONET_D5
• AGT_XM_SONET_D6
• AGT_XM_SONET_D7
• AGT_XM_SONET_D8
• AGT_XM_SONET_D9
• AGT_XM_SONET_D10
• AGT_XM_SONET_D11
• AGT_XM_SONET_D12
API Programming Guide

Objects 6
• AGT_XM_SONET_S1
• AGT_XM_SONET_Z1
• AGT_XM_SONET_Z2
• AGT_XM_SONET_M1
• AGT_XM_SONET_M0
• AGT_XM_SONET_E2

ByteMode Enum
EAgtXmSonet
TransportOverhead
ByteMode

How a particular byte in the SONET/SDH overhead is
set by the tester.
• AGT_XM_EDITABLE_BYTE: This byte has a

default, but can be user-edited. Available for all the
bytes except B1, B2, J0 and H1, H2, H3 bytes. J0
excluded from STS3-1 only, it becomes Z if other
STS3s and can be edited.

• AGT_XM_FIXED_BYTE: This byte is not user
editable. Includes B1, B2, J0 and H1, H2, H3 bytes.
J0 only appears in STS3-1

Sts1Col Long Indicates which STS1 column within the current STS3
should be used. Valid range 1-3.

Value unsigned char 8-bit integer (unsigned char) specifying the value of the
overhead byte

K1,K2 unsigned char Automatic Protection Switching, K1 and K2 bytes.
Enables downstream line-terminating equipment to
initiate protection switching upon detection of line
defects, by switching to standby systems (in linear APS,
bidirectional line-switched rings). Default is Not Used
(0x0000)

TraceLength Enum EAgtXmTraceLength
• AGT_XM_SECTION_TRACE_16_BYTES
• AGT_XM_SECTION_TRACE_64_BYTES

SectionTrace String User defined string. Could be 15 or 62 bytes long
depending on the current selected setting of trace mode.

Sts3PosF Long Indicates the STS3 header that is being
viewed/controlled. Valid range depends on the line
speed.
10G = [1-64];
2G5 = [1-16];
622M = [1-4];
155M = [1]
API Programming Guide 115

6 Objects
Length Enum Length of the rceieved Section trace message. Possible
values are 15, 62 or 64.

OverheadBytesSnapshot Array An array [1 X 81] of Overhead bytes. Same order as the
frame transmission. On transmission; user specified
values for B1, B2, J0 and H1, H2, H3 bytes will be
ignored
116
 API Programming Guide

Objects 6
AgtXmSdhSectionOverhead
Summary
API Programming Guide
This interface gets the value of section and line (Transport) overhead
bytes being used in transmitted and received SDH frames. Sets the
values of certain transmitted bytes contained in the first STM-1 channel,
except for B1, B2, J0 and H1 - H3.
Syntax
 AgtInvoke AgtXmSdhTransportOverhead Method InParams ->
OutParams
Methods
 GetTxOverheadByteMode PortHandle Stm1Pos Byte Stm0Col ->
ByteMode
Gets the Mode of the overhead byte. The Mode indicates
whether the byte can be edited, or whether its value is
fixed.

SetAllTxOverheadBytesToDefault PortHandle
SetTxOverheadByteToDefault PortHandle Stm1Pos Byte Stm0Col

SetTxOverheadByte PortHandle Stm1Pos Byte Stm0Col Value
GetTxOverheadByte PortHandle Stm1Pos Byte Stm0Col -> Value

SetStm1TxOverheadBytes PortHandle Stm1Pos
OverheadBytesSnapshot
GetStm1TxOverheadBytes PortHandle Stm1Pos ->
OverheadBytesSnapshot

SetTxAps PortHandle K1 K2
GetTxAps PortHandle -> K1 K2

SetTxSectionTraceMessageToDefault PortHandle

SetTxSectionTraceLength PortHandle TraceLength
GetTxSectionTraceLength PortHandle -> TraceLength

SetTxSectionTraceMessage PortHandle SectionTrace
GetTxSectionTraceMessage PortHandle -> SectionTrace

Note: The following are Thru mode functions.

GetRxOverheadByte PortHandle Sts1Pos Byte ->Stm1Pos Value
GetStm1RxOverheadBytes PortHandle Stm1Pos
OverheadBytesSnapshot
GetRxAps PortHandle -> K1 K2

GetRxSectionTraceMessage PortHandle -> SectionTraceMessage
GetRxSectionTraceLength PortHandle -> Length

SetCurrentRxStm1 PortHandle Stm1Pos
GetCurrentRxStm1 PortHandle -> Stm1Pos
117

6 Objects
Parameters
PortHandle Long A handle to a test port, as returned by AgtPortSelector

Byte Enum An overhead byte in SDH frames:
For descriptions of the overhead bytes, see this quick reference on
SDH frame header. You may get the value of any byte in received
frames. The non- editable bytes in transmitted frames are set to
either a fixed or automatically calculated (correct) value.
• AGT_XM_SDH_A1
• AGT_XM_SDH_A2
• AGT_XM_SDH_J0
• AGT_XM_SDH_Z0
• AGT_XM_SDH_B1
• AGT_XM_SDH_E1
• AGT_XM_SDH_F1
• AGT_XM_SDH_D1,
• AGT_XM_SDH_D2.
• AGT_XM_SDH_D3
• AGT_XM_SDH_H1,
• AGT_XM_SDH_H2
• AGT_XM_SDH_H3
• AGT_XM_SDH_B2
• AGT_XM_SDH_K1
• AGT_XM_SDH_K2
• AGT_XM_SDH_D4,
• AGT_XM_SDH_D5
• AGT_XM_SDH_D6,
• AGT_XM_SDH_D7
• AGT_XM_SDH_D8,
• AGT_XM_SDH_D9
• AGT_XM_SDH_D10,
• AGT_XM_SDH_D11
• AGT_XM_SDH_D12
• AGT_XM_SDH_S1
• AGT_XM_SDH_Z1
• AGT_XM_SDH_Z2
• AGT_XM_SDH_M1
• AGT_XM_SDH_M0
• AGT_XM_SDH_E2
118 API Programming Guide

Objects 6
ByteMode Enum How a particular byte in the SDH overhead is set by the tester.
• AGT_XM_EDITABLE_BYTE: This byte has a default, but can

be user-edited. Available for all the bytes except B1, B2, J0 and
H1, H2, H3 bytes.

• AGT_XM_FIXED_BYTE: This byte is not user editable.
Includes B1, B2, J0 and H1, H2, H3 bytes. J0 only appears in
STS3-1

Stm0Col Long Indicates which STM0 column within the current STM1 should be
used. Valid range 1-3.

Value unsigned char 8-bit integer (unsigned char) specifying the value of the overhead
byte.

K1, K2 unsigned char Automatic Protection Switching, K1 and K2 bytes. Enables
downstream line-terminating equipment to initiate protection
switching upon detection of line defects, by switching to standby
systems (in linear APS, bidirectional line-switched rings). Default is
Not Used (0x0000).

TraceLength Enum • AGT_XM_TRACE_16_BYTES
• AGT_XM_TRACE_64_BYTES
•

SectionTrace String User defined string. Could be 15 or 62 bytes long depending on the
current selected setting of trace mode.

Stm1Pos Long Indicates the STM1 header that is being viewed/controlled. Valid
range depends on the line speed.
10G = [1-64];
2G5 = [1-16];
622M = [1-4];
155M = [1]

Length Long Length of the received Section trace message. Possible values are
15, 62 or 64.

OverheadBytesSnapshot Array An array [1 X 81] of Overhead bytes. Same format as the frame
transmission. User specified values for B1, B2, J0 and H1, H2, H3
bytes will be ignored.
API Programming Guide
 119

6 Objects
AgtXmSonetError
Summary
120
This interface is used to controlling the error injection in the transmitted
signal. Only B1, B2 and B3 errors could be injected in Thru Mode.
Syntax
 AgtInvoke AgtXmSonetError Method InParams -> OutParams
Methods
 SetTxError PortHandle Error Type
GetTxError PortHandle -> ErrorType

GetREILErrorMode PortHandle ->REILErrorMode
SetREILErrorMode PortHandle REILErrorMode

GetErrorRateRange PortHandle ErrorRateType
->MinErrorRateBase ->MinErrorRatePower ->MaxErrorRateBase
->MaxErrorRatePower

SetErrorRate PortHandle ErrorRateType ErrorRateBase
ErrorRatePower

GetErrorRate PortHandle ErrorRateType ->ErrorRateBase
->ErrorRatePower

GetStrErrorRate PortHandle SonetRateType ->ErrorRate

AddSingleError PortHandle

ErrorRateOn PortHandle
ErrorRateOff PortHandle
IsErrorRateOn PortHandle -> State (Bool)

ListValidErrorTypes PortHandle -> ErrorType[]

SetServiceDisruptionGuardTime PortHandle GuardTime
GetServiceDisruptionGuardTime PortHandle -> GuardTime
SetServiceDisruptionGuardTimeToDefault PortHandle
GetMaxServiceDisruptionTime PortHandle -> DisruptionTime

SetTxErrorMode PortHandle ErrorMode
GetTxErrorMode PortHandle -> ErrorMode

ErrorRateOnAllPorts
ErrorRateOffAllPorts
AddSingleErrorAllPorts
API Programming Guide

Objects 6
Parameters
API Programming Guide
PortHandle Long A handle to a test port, as returned by AgtPortSelector.

ErrorRateBase float 1.00-9.99

ErrorRatePower EAgtXmError
RatePower

AGT_XM_ERROR_RATE_1E-3
AGT_XM_ERROR_RATE_1E-4
AGT_XM_ERROR_RATE_1E-5
AGT_XM_ERROR_RATE_1E-6
AGT_XM_ERROR_RATE_1E-7
AGT_XM_ERROR_RATE_1E-8
AGT_XM_ERROR_RATE_1E-9
AGT_XM_ERROR_RATE_1E-10

Error Rate String Logical Concatenation of ErrorRateBase and
ErrorRatePower for example "3.4 * 1E-5"

Error Type EAgtXmSonet
ErrorType
EagtXmSdhErr
orType

EAgtXmSonetError
AGT_XM_SONET_B1_ERROR
AGT_XM_SONET_B2_ERROR

AGT_XM_SONET_REIL_ERROR
AGT_XM_SONET_B3_ERROR
AGT_XM_SONET_REIP_ERROR
AGT_XM_SONET_BIT_ERROR

AGT_XM_SONET_REIV_ERROR
AGT_XM_SONET_BIP_ERROR

EAgtXmSdhError
AGT_XM_SDH_B1_ERROR
AGT_XM_SDH_B2_ERROR
AGT_XM_SDH_MSREI_ERROR
AGT_XM_SDH_B3_ERROR
AGT_XM_SDH_BIT_ERROR
AGT_XM_SDH_HPREI_ERROR

AGT_XM_SDH_LPREI_ERROR
AGT_XM_SDH_TUBIP_ERROR

REILErrorMode EAgtXmREIL
ErrorMode

AGT_REIL_M1_MO_MODE
AGT_REIL_M1_ONLY_MODE
121

6 Objects
Error Rate Type EAgtXmSonet
ErrorRate

EAgtXmSdh
ErrorRate

Sonet
AGT_XM_SONET_LINE
AGT_XM_SONET_STS1
AGT_ XM_SONET_STS3c
AGT_ XM_SONET_STS6c
AGT_ XM_SONET_STS9c
AGT_ XM_SONET_STS12c
AGT_ XM_SONET_STS24c
AGT_ XM_SONET_STS48c
AGT_ XM_SONET_STS192c
AGT_XM_SONET_VT1_5
AGT_XM_SONET_VT2
AGT_XM_SONET_TU3

SDH
AGT_XM_SDH_LINE
AGT_XM_SDH_AU3
AGT_XM_SDH_AU4
AGT_XM_SDH_AU4_2c
AGT_XM_SDH_AU4_3c
AGT_XM_SDH_AU4_4c
AGT_XM_SDH_AU4_8c
AGT_XM_SDH_AU4_16c
AGT_XM_SDH_TU11
AGT_XM_SDH_TU12
AGT_XM_SDH_TU3

GuardTime Long The guard time used to define the end of a burst is user configurable between
100ms and 1600ms in 1ms steps. This will be accurate to +/- 0.5ms. The default
guard time is 200ms.

ErrorMode EAgtXmError
BurstMode

AGT_XM_ERROR_MODE_MANUAL
AGT_XM_ERROR_MODE_TIMED

ErrorRateState Bool • 1: Error is on.
• 0: Error is off.

DisruptionTime Double The maximum service disruption time that can be measured. (Note this is not the
maximum service disruption time that has occurred on the port)
122
Error codes

Details

Timed burst mode not supported for VT/TU errors.

0 Success

>0 Invalid Handle: If PortHandle does not correspond to an active port as
assigned by AgtPortSelector.
API Programming Guide

Objects 6
AgtXmSdhError
API Programming Guide
See the list of commands given for AgtXmSonetError.
123

6 Objects
AgtXmSonetAlarm
Summary
124
This interface is used to controlling the alarm injection in the
transmitted signal. Only LOS, LOF, LOP, AIS-P, alarms can be injected
in Thru Mode. AIS-V, LOP-V, RDI-V, UNEQ-V, and RFI-V are only
available in VT mode.
Syntax
 AgtInvoke AgtXmSonetAlarm Method InParms -> OutParms
Methods
 SetTxAlarm PortHandle AlarmType
GetTxAlarm PortHandle -> AlarmType

SetAlarmValue PortHandle AlarmType Value (only for PDI-P &
RDI-P)
GetAlarmValue PortHandle AlarmType -> Value (only for PDI-P
& RDI-P)
SetAlarmValueToDefault PortHandle AlarmType (only for PDI-P
& RDI-P)

EnhancedRdipModeOn PortHandle
EnhancedRdipModeOff PortHandle
IsEnhancedRdipModeOn PortHandle -> State (BOOL)

AlarmOn PortHandle
AlarmOff PortHandle
IsAlarmOn PortHandle
SetAlarmValueToDefault PortHandle AlarmType
TransmitAlarm PortHandle
ListValidAlarmTypes PortHandle -> AlarmType[]

Note: Returned list is valid for the current operating mode
for the port. The list will be empty if no alarms are valid
in the current mode.

SetTxAlarmMode PortHandle AlarmMode
GetTxAlarmMode PortHandle -> AlarmMode

AlarmOnAllPorts
AlarmOffAllPorts
TransmitAlarmAllPorts

The 'SetTxAlarmMode' method may return E_AGT_RESOURCE_IN_USE
if alarms are switched on when the user attempts to change
the operating mode. The 'SetTxAlarmMode' method may return
E_AGT_INVALID_OPERATION if attempting to set 'pulsed' mode
when LOS alarm type selected
API Programming Guide

Objects 6
Parameters
Long

PortHandle long A handle to a port, as returned by AgtPortSelector.

Value long PDI-P Any 8-bit value
Enhanced RDIP 2, 5 and 6. Non-Enhanced RDIP 4 and 7.

AlarmType EAgtXmSonetAlarm
Type/
EAgtXmSdhAlarm
Type

AGT_XM_SONET_ALARM_NONE
AGT_XM_SONET_LOS
AGT_XM_SONET_SEF
AGT_XM_SONET_LOF
AGT_XM_SONET_AISL

AGT_XM_SDH_ALARM_NONE
AGT_XM_SDH_LOS
AGT_XM_SDH_OOF
AGT_XM_SDH_LOF
AGT_XM_SDH_MSAIS

VT/TU Commands

AGT_XM_SONET_RDIL
AGT_XM_SONET_AISP
AGT_XM_SONET_LOPP
AGT_XM_SONET_RDIP
AGT_XM_SONET_UNEQP
AGT_XM_SONET_PSL
AGT_XM_SONET_PDIP

AGT_XM_SONET_H4_LOM
AGT_XM_SONET_AISV
AGT_XM_SONET_LOPV
AGT_XM_SONET_RDIV
AGT_XM_SONET_UNEQV
AGT_XM_SONET_RFIV
AGT_XM_PDH_AIS
AGT_XM_PDH_LOF

AGT_XM_SDH_MSRDI
AGT_XM_SDH_AUAIS
AGT_XM_SDH_AULOP
AGT_XM_SDH_HPRDI
AGT_XM_SDH_HPUNEQ
AGT_XM_SDH_PSL
AGT_XM_SDH_PDIP

AGT_XM_SDH_H4_LOM
AGT_XM_SDH_TUAIS
AGT_XM_SDH_TULOP
AGT_XM_SDH_TURDI
AGT_XM_SDH_TUUNEQ
AGT_XM_SDH_TURFI
AGT_XM_PDH_AIS
AGT_XM_PDH_LOF

TransmitterMode Enum AGT_TX_TERMINAL_MODE
AGT_TX_THRU_MODE

AlarmMode EAgtXmAlarmBurst
Mode

AGT_XM_ALARM_MODE_MANUAL
AGT_XM_ALARM_MODE_PULSED
AGT_XM_ALARM_MODE_TIMED
Details
API Programming Guide
You can only generate a single SONET/SDH alarm type for each port
within the test session. SEF/OOF is a one-shot alarm that is injected by
calling TransmitAlarm. All VT/TU and PDH alarms do not support
pulsed or timed burst modes.
125

126

6 Objects
AgtXmSdhAlarm
See the list of commands given for AgtXmSonetAlarm.
API Programming Guide

Objects 6
AgtXmStatus
Summary
API Programming Guide
This interface checks if any SONET/SDH alarms or errors were
detected in the last sampling interval, and is available in both Terminal
and Thru Mode.

The interface is common for both SONET/SDH. Same bits are mapped
to analogous SONET/SDH errors.
Syntax
 AgtInvoke AgtXmStatus Method InParams -> OutParams
Methods
 GetPortSummaryStatus -> StatusRegister
GetPortStatus PortHandle -> StatusRegister
GetPathSummaryStatus PortHandle -> StatusRegister
GetPathStatus PortHandle PathPos -> StatusRegister

GetLoSummaryStatus PortHandle PathPos -> StatusRegister
GetLoStatus PortHandle PathPos LoNumber -> StatusRegister

GetPortSummaryHistory PortHandle -> HistoryStatusRegister
GetPortHistory PortHandle -> HistoryStatusRegister
GetPathSummaryHistory PortHandle -> HistoryStatusRegister
GetPathHistory PortHandle PathPos -> HistoryStatusRegister

GetLoSummaryHistory PortHandle PathPos ->
HistoryStatusRegister
GetLoHistory PortHandle PathPos LoNumber ->
HistoryStatusRegister
ClearHistory PortHandle

GetPortSummaryEventRegister -> EventRegister
GetPortEventRegister PortHandle -> EventRegister
GetPathSummaryEventRegister PortHandle -> EventRegister
GetPathEventRegister PortHandle PathPos -> EventRegister
GetLoSummaryEventRegister PortHandle PathPos ->
EventRegister
GetLoEventRegister PortHandle PathPos LoNumber ->
EventRegister

SetPortSummaryEventEnableRegister EnableRegister
GetPortSummaryEventEnableRegister -> EnableRegister
SetPortEventEnableRegister PortHandle EnableRegister
GetPortEventEnableRegister PortHandle -> EnableRegister
SetPathSummaryEventEnableRegister PortHandle EnableRegister
GetPathSummaryEventEnableRegister PortHandle ->
EnableRegister
SetPathEventEnableRegister PortHandle PathPos EnableRegister
GetPathEventEnableRegister PortHandle PathPos ->
EnableRegister
SetLoSummaryEventEnableRegister PortHandle PathPos
EnableRegister
GetLoSummaryEventEnableRegister PortHandle PathPos ->
EnableRegister
127

128

6 Objects
SetLoEventEnableRegister PortHandle PathPos LoNumber
EnableRegister
GetLoEventEnableRegister PortHandle PathPos LoNumber ->
EnableRegister

SetPortSummaryNegativeTransitionFilter TransitionFilter
GetPortSummaryNegativeTransitionFilter -> TransitionFilter
SetPortNegativeTransitionFilter PortHandle TransitionFilter
GetPortNegativeTransitionFilter PortHandle ->
TransitionFilter
SetPathSummaryNegativeTransitionFilter PortHandle
TransitionFilter
GetPathSummaryNegativeTransitionFilter PortHandle ->
TransitionFilter
SetPathNegativeTransitionFilter PortHandle PathPos
TransitionFilter
GetPathNegativeTransitionFilter PortHandle PathPos ->
TransitionFilter
SetLoSummaryNegativeTransitionFilter PortHandle PathPos
TransitionFilter
GetLoSummaryNegativeTransitionFilter PortHandle PathPos ->
TransitionFilter
SetLoNegativeTransitionFilter PortHandle PathPos LoNumber
TransitionFilter
GetLoNegativeTransitionFilter PortHandle PathPos LoNumber ->
TransitionFilter
SetPortSummaryPositiveTransitionFilter TransitionFilter
GetPortSummaryPositiveTransitionFilter -> TransitionFilter
SetPortPositiveTransitionFilter PortHandle TransitionFilter
GetPortPositiveTransitionFilter PortHandle ->
TransitionFilter
SetPathSummaryPositiveTransitionFilter PortHandle
TransitionFilter
GetPathSummaryPositiveTransitionFilter PortHandle ->
TransitionFilter
SetPathPositiveTransitionFilter PortHandle PathPos
TransitionFilter
GetPathPositiveTransitionFilter PortHandl PathPos ->
TransitionFilter
SetLoSummaryPositiveTransitionFilter PortHandle PathPos
TransitionFilter
GetLoSummaryPositiveTransitionFilter PortHandle PathPos ->
TransitionFilter
SetLoPositiveTransitionFilter PortHandle PathPos LoNumber
TransitionFilter
GetLoPositiveTransitionFilter PortHandle PathPos LoNumber ->
TransitionFilter

GetSummaryStatus PortHandle -> Status
GetSummaryHistory PortHandle -> History

GetAllLoStatus PortHandle -> Status[]
GetAllLoHistory PortHandle -> History[]
API Programming Guide

Objects 6
Parameters
API Programming Guide
PortHandle Long A handle to a test port, as returned by AgtPortSelector.

StatusRegister Long SONET/SDH status bits
Only 16 least significant bits are used. See below for
explanation of bits.This register maintains the status of the
errors, alarms or events during the last sample period. There is
no latching of conditions in this register, it is updated in real
time.

HistoryStatusRegister Long SONET/SDH Status History bits
Only 16 least significant bits are used. See below for
explanation of bits.This returns the Status over the period since
the last ClearHistory function was called.

EventRegister Long SONET/SDH Event Register bits
Only 16 least significant bits are used. See below for
explanation of bits.Latches the transient states that occur in the
Condition Register as specified by the Transition Filters. The
act of reading these registers resets their contents to all 0's.
These bits contribute towards the summary message from the
Data Structure.

EnableRegister Long SONET/SDH Event Enable Register bits
Only 16 least significant bits are used. See below for
explanation of bits.Masks the Event Register, determining
which of its bits set the summary bit in the Summary Message.

TransitionFilter Long SONET/SDH Event Transition Filter bits
Only 16 least significant bits are used. See below for
explanation of bits.Determines whether positive or negative or
both transitions in the Condition Register set the Event Register
Path Register
DB0 UNEQ Indicates the specified path is unequipped
DB1 REI-P Indicates Path REI on the specified path
DB2 B3 Indicates B3 Errors on the specified path
DB3 LOP Indicates LOP on the specified path.
DB4 PDI-P Indicates PDI-P on the specified path.
DB5 AIS-P Indicates Path AIS on the specified path
DB6 PNTR Indicates Pointer Adjust on the specified path
DB7 SDIR Indicates Service Disruption on the specified path
DB8 not used
DB9 not used
129

6 Objects
DB10 RDI-P Indicates Path RDI on the specified path.
DB11 BIT-ER Indicates Bit Errors on the specified path.
DB12 not used
DB13 PSL Indicates Pattern Sync Loss on the specified path.
DB14 SUMM-V VT Event Summary - indicates an event or events are

signalled in at least one of the reeceived VT’s for the
specified path.

DB15 not used And must never be used
130
The layout for the Path Summary Register set is identical to the above
Path Register set layout.

Port Register
DB0 LOS Indicates LOS at the specified port
DB1 LOP Indicates LOF at the specified port
DB2 SEF Indicates SEF at the specified port
DB3 B1 Indicates B1 errors on the specified port.
DB4 AIS-L Indicates Line AIS on the specified port.
DB5 B2 Indicates B2 errors on the specified port
DB6 REI-L Indicates Line REI-L on the specified port
DB7 not used
DB8 not used
DB9 RDI-L Indicates Line RDI on the specified port
DB10 not used
DB11 not used
DB12 not used
DB13 not used
DB14 not used
DB15 not used And must never be used
The layout for the Port Summary Register is:

DB0 - SUMM-P - Set if any path register bit is set for this port.
DB1 to DB15 - Not used.

VT/TU Register

DB0 UNEQ-V Indicates the specified VT is unequipped
DB1 REI-V Indicates REI-V on the specified VT
DB2 BIP Indicates BIP on the specified VT
DB3 LOP-V Indicates LOP-V on the specified VT
DB4 RFI-V Indicates RFI-V on the specified VT
DB5 AIS-V Indicates AIS-V on the specified VT
DB6 PNTR Indicates Pointer Adjust on the specified VT
DB7 SDIR Indicates Service Disruption on the specified VT
DB8
API Programming Guide

Objects 6

API Programming Guide
DB9 Not Used -
DB10 RDI-V Indicates RDI-V on the specified VT
DB11 BIT-ER Indicates Bit Errors on the specified VT
DB12 Not Used -
DB13 PSL Indicates Pattern Sync Loss on the specified VT
DB14 Not Used -
DB15 Not Used Not to be used
131

6 Objects
AgtXmSonetPathOverhead
Summary
132
This interface gets the value of Path overhead bytes being used in
transmitted and received SONET/SDH frames. Each of the POH bytes
in each channel, except for J1& B3 may be individually set.
Syntax
 AgtInvoke AgtXmSonetPathOverhead Method InParams ->
OutParams
Methods
 GetTxPathOverheadByteMode PortHandle Sts1Pos Byte ->
ByteMode
Gets the Mode of the overhead byte. The Mode indicates
whether the byte can be edited, or whether its value is
fixed.

SetTxByteToDefaultValue PortHandle Sts1Pos Byte
Returns an error if an attempt to change a fixed POH value.

SetAllTxBytesToDefaultValue PortHandle Sts1Pos
Sets all the bytes of the POH to their default values. Note
that calling this function from the SONET and SDH interfaces
loads different values into the C2 byte.

SetAllChannelsAllTxBytesToDefaultValue portHandle
Sets all the bytes of the POH in all the channels to their
default values. Note that calling this function from the
SONET and SDH interfaces loads different values into the C2
byte.

SetTxPathOverheadByte PortHandle Sts1Pos Byte Value
Changes an individual byte within the POH for a particular
channel. Returns an error if an attempt to change a fixed
POH value.

GetTxPathOverheadByte PortHandle Sts1Pos Byte -> Value
Returns an error if an attempt to change a fixed POH value.

SetTxPathOverheadHeader PortHandle Sts1Pos
PathOverheadHeader
User specified values for J1 & B3 bytes will be ignored.

GetTxPathOverheadHeader PortHandle Sts1Pos ->
PathOverheadHeader
J1/B3 bytes are set to zero.

SetTxPathTraceMessageLength PortHandle Sts1Pos TraceLength
The system defaults to the 64 byte message format at
initialisation. When the user changes the length of the
PathTraceMessage the previously set value for the new length
is restored. (If no previous value exists the default
message will be used.)

GetTxPathTraceMessageLength PortHandle Sts1Pos ->
TraceLength
API Programming Guide

Objects 6

API Programming Guide
SetTxPathTraceMessage PortHandle Sts1Pos PathTraceMessage
If the user has not defined a message, then the default
message (of the appropriate length) will be used.

SetTxPathTraceMessageToDefault PortHandle Sts1Pos
Sets the transmit path trace message to the default. This is
applied to the currently configured length of message for
the channel in question. The other length of message is left
unchanged.

GetTxPathTraceMessage PortHandle Sts1Pos -> PathTraceMessage
Returns the actual message being sent which means that if the
default message mode is set, the default message is
returned.

SetAllTxPathTraceMessages PortHandle PathTraceMessage
Sets the Tx Path Trace message for all the channels on the
link. Note that the Path Trace Message may contain escape
sequences that will be translated before the message is
loaded, typically this includes the channel number and
therefore each message will be unique.

IncrementTxPointerPortHandle
Increments the current H1/H2 pointers. If maximum value is
reached this wraps around to zero.

DecrementTxPointer ->PortHandle
Decrements the current H1/H2 pointers. If minimum value is
reached this wraps around to the maximum value.

SetNewTxPointerValue PortHandle PointerValue NDFState
Sets the current H1/H2 pointers to an arbitrary value.

GetCurrentTxPointerValue PortHandle -> PointerValue

SetCurrentRxChannel PortHandle Sts1Pos
The hardware can only monitor one STS channel at a time.
This method switches the receiver circuits to look at a
different STS. To ensure that invalid cached information is
not returned, the current values of the POH and J1 message
are discarded if a channel change occurs.

GetCurrentRxChannel PortHandle -> Sts1Pos
Returns the currently monitored STS channel.

GetRxPathOverheadByte PortHandle Byte -> Sts1Pos Value
Returns the current POH byte value from the current Rx
channel. This may return an error if the POH has not been
updated following the previous switch of Rx channel. Not
available for J1 and B3 bytes.

GetRxPathOverheadHeader PortHandle -> Sts1Pos
PathOverheadHeader
Returns the current POH values from the currently selected
Rx channel. This may return an error if the POH has not been
updated following the previous switch of Rx channel.
133

134

6 Objects
SetRxExpectedPathTraceMessageLength PortHandle Sts1Pos
TraceLength
Sets the expected receive length of the message. If a call
to this function changes the currently set message length
the expected receive message will be reset to the default
message for the new length.

GetRxExpectedPathTraceMessageLength PortHandle Sts1Pos ->
TraceLength

GetRxPathTraceMessage PortHandle -> Sts1Pos TraceLength
PathTraceMessage
Returns the received J1 path trace message for the currently
selected Rx channel. This may return an error if the J1
Trace message has not been updated following the previous
switch of Rx channel.

SetRxExpectedPathTraceMessage PortHandle Sts1Pos
PathTraceMessage
At initialization the user defined messages are set to the
default message. This method should be used to overwrite
that with a user defined message.

GetRxExpectedPathTraceMessage PortHandle Sts1Pos ->
PathTraceMessage
Returns the expected J1 trace message for the given STS.
After re-configuring a channel or channels to have the
expected J1 Trace Message 'as received' there will be a
period when this information is unavailable (and error is
returned in the case).

SetAllRxExpectedPathTraceMessagesAsReceived PortHandle
All the channels defined in the Rx Channel mask have their
expected J1 trace message set to match that currently
received. Note that the length of the trace message may be
changed by this command, depending on what is received from
the link.

SetRxExpectedPathTraceMessageAsReceived PortHandle Sts1Pos
Sets the expected trace message for the given STS to match
the currently received trace message.

StartPathTraceMessageCheck PortHandle
Starts a single scan of those channels included in the
Receive channel mask STS and validates that the expected
message matches that received.

IsPathTraceMessageCheckOn PortHandle -> BOOL
Indicates if there is a Path Routing Message Check in
progress.

IsRxPathTraceMessageAsExpected PortHandle Sts1Pos -> Result
(BOOL)
Returns the result of the last (which could be a considerable
time before) call to StartPathTraceMessageCheck for the
requested channel. If the last Path Trace Message Check has
not completed, this interface method returns an error
API Programming Guide

Objects 6

API Programming Guide
indicating that the check is not complete. Channels not
included in the received channel mask (and therefore not
checked) also return an error.

IsMultiRxPathTraceMessageAsExpected PortHandle ->
ErroredChannelList
Returns the result of the last (which could be a considerable
time before) call to StartPathTraceMessageCheck for the
requested channel. An error is returned if the channel
configuration has changed since the last call (as the
results could not be relied on). If the last Path Trace
Message Check has not completed, an error is returned
indicating the fact. Channels not included in the received
channel mask do not show any errors.
Parameters
Long A handle to a test port, as returned by AgtPortSelector
PortHandle

Byte Enum EAgtXmPathOverheadByte
• AGT_XM_SONET_J1
• AGT_XM_SONET_B3
• AGT_XM_SONET_C2
• AGT_XM_SONET_G1
• AGT_XM_SONET_F2
• AGT_XM_SONET_H4
• AGT_XM_SONET_Z3
• AGT_XM_SONET_Z4
• AGT_XM_SONET_N1

EAgtXmPathOverHeadByte
• AGT_XM_SDH_J1
• AGT_XM_SDH_B3
• AGT_XM_SDH_C2
• AGT_XM_SDH_G1
• AGT_XM_SDH_F2
• AGT_XM_SDH_H4
• AGT_XM_SDH_F3
• AGT_XM_SDH_K3
• AGT_XM_SDH_N1
•

ByteMode Enum EAgtXmPath OverheadByteMode
• AGT_XM_EDITABLE_BYTE:
This byte has a default, but can be user-edited. Available
for all the bytes except J1 & B3 bytes.
AGT_XM_FIXED_BYTE: This byte is not user editable.
Includes J1 & B3 bytes.

Sts1Pos Long Limits depend on current Line rate.
10G -- [1-192]
2.5G -- [1-48]
622M -- [1-12]
155M -- [1-3]

Value unsigned
char

8-bit integer (unsigned char) specifying the value of the
overhead byte.

PointerValue Long [0-782]
135

6 Objects
NDFState Bool 1:Flag in On
0:Flag is Off

TraceLength Enum EAgtXmTraceLength
• AGT_XM_PATH_TRACE_16_BYTES
• AGT_XM_PATH_TRACE_64_BYTES

PathTraceMessage String User defined string. Could be up to (and including) 15 or
62 bytes long depending on the current selected setting of
trace mode. The appropriate terminator will be added.
For methods that set the Path Trace Message (Tx and
expected Rx) the string may contain escape sequences
which will be replaced before the Trace message is used.
For the corresponding 'get' methods the expanded string
will be returned.
These escape sequences can appear anywhere in the
message (multiple times if you want). They are all fixed
width and the escape sequence reflects the number of
characters that the field takes.
<inst> - Instrument number (6 characters, taken from
configured name).
<port> - Port number (6 characters in the format nnnn/n,
which is made up of the rack position, module number
and the physical port within the module).
<c> - Channel number (3 digits, leading 0 added if
needed).

PathOverheadHeader Array Array of [1 X 9] bytes

ErroredChannelList List<long> List of channels with errored J1 bytes.

Result Bool 1: If Received Path trace string matched with the expected
path trace string
0: Otherwise
136
Notes :

All functions that use parameters with fixed ranges will return an error if
called with that parameter out of range. The Sts1Pos parameter's upper
range limit is checked dependent on the line rate of the current port.
API Programming Guide

Objects 6

API Programming Guide
All methods are valid in both the SONET (AgtXmSonetPathOverhead)
and SDH (AgtXmSdhPathOverhead) interfaces. The operation is the
same whichever interface is called except where stated. In which case
the operation is appropriate to the interface called.

SONET POH Header Default Values

Default values for the SONET POH header (excluding J1 and B3) are:

• C2 - 0x01 - Equipped non specific

• G1 - 0x00 - No B3 errors and no defects

• F2 - 0x00 - No message

• H4 - 0x00 - Not VT-structured format

• Z3 - 0x00 - Reserved for future use

• Z4 - 0x00 - Reserved for future use

• N1 - 0x00 - No incoming error count

For SDH all values are the same except for the C2 byte which is (by
default) set to 0xfe - O.181 bulk filled.

The default Path Trace Messages are (both transmit and expected):

16 byte format: Agt <port>-<c>

64 byte format: Agilent OmniBER XM <inst> Port <port>-<c>

Escape sequences will be expanded, padding and appropriate
terminators will be added automatically.

The StartPathTraceMessageCheck, SetCurrentRxChannel are two
methods that mark the result data as invalid. When switching Rx
channel, the current POH and J1 trace messages are marked as invalid
until the stored values are updated with new information received from
the driver. Similarly the results of any previous path trace message
check are marked as invalid when the new check starts. Marking the
data as invalid allows a polling user interface to check when the results
are ready. Calling the appropriate 'GetData' method after issuing the
command may result in the 'Data Not Available' error being returned. If
this happens it indicates that the results are not yet ready, and to try the
call again. If the user interface has requested callback notification, then
the notification routine will be called immediately the results are
available.
137

138

6 Objects
Error Codes

Calls to these interface methods may return an error. The following
error codes are used.

E_AGT_INVALID_PARAMETER - Returned when one of the input
parameters is not valid. Typically this will indicate that the channel
number is not valid. The number of valid channels depends on the link
speed.

E_AGT_RESOURCE_IN_USE - Returned when a second call is made
when the first one has yet to complete. For example only one Path
Trace Message Check can be in progress at any one time.

E_AGT_DATA_NOT_AVAILABLE - Indicates that the results data
from the previous call is not yet available. If polling the interface and
try again in a short while, otherwise wait for the callback routine to
indicate the data is available.

E_AGT_OUT_OF_BOUNDS - Returned when requesting the multiple
results of the last Path Trace Message Check. It indicates that the Rx
Channel Mask has changed since the last check and the stored results
are no longer valid. Start the Path Trace Message Check again and wait
for the results. In the single channel results it indicates that the channel
was not included in the last check.
API Programming Guide

Objects 6
AgtXmSdhPathOverhead
API Programming Guide
See AgtXmSonetPathOverhead. All the same functions will exist with
the same names. The user must use SDH names to reference the bytes
in the POH. Where a functional difference occurs between the Sonet
and SDH versions, the action taken will be appropriate to the interface
used (in this case it overrides the currently selected link level mode).
139

6 Objects
AgtXmPayload
Summary
140
Configures the payload of ALL the selected transmit channels on a
particular port. All the functions are available in Terminal mode but
only the Rx functions are available in Thru Mode.
Methods
 SetTxPayloadType PortHandle PayloadType ChannelPositions[]
GetTxPayloadType PortHandle ChannelPositions[] ->
PayloadTypes[]

SetTxPayloadUserPattern PortHandle PayloadPattern
GetTxPayloadUserPattern PortHandle -> PayloadPattern

SetRxPayloadType PortHandle PayloadType ChannelPositions[]
GetRxPayloadType PortHandle ChannelPositions -> PayloadTypes

SetRxExpectedPayloadUserPattern PortHandle PayloadPattern
GetRxExpectedPayloadUserPattern PortHandle -> PayloadPattern
Parameters
Po
rtHandle Long A handle to a test port, as returned by
AgtPortSelector.

PayloadType Enum AGT_XM_PAYLOAD_PRBS_23
AGT_XM_PAYLOAD_PRBS_23_INVERTED
AGT_XM_PAYLOAD_USER_PATTERN
AGT_XM_PAYLOAD_USER_LIVE

PayloadPattern Long 16 bit number

ChannelPosition Long List of channel start positions to set to payload type.
API Programming Guide

Objects 6
AgtXmSonetStatistics
Summary
API Programming Guide
This interface deals with SONET statistics. It is available in both
Terminal & Thru Mode.

Each port that is selected for collecting statistics will use the Received
Selected channel mask associated with the port. For changing the
channel selection, AgtXmSonetChannelConfig::SelectChannels and
AgtXmSonetVtConfig::SelectVts and other functions in this interface
are used.
Syntax
 AgtInvoke AgtXmSonetStatistics Method InParams -> OutParams
Methods
 SelectStatistics StatisticsHandle Statistics
ListSelectedStatistics StatisticsHandle ->
SelectedStatistics
ListAvailableStatistics -> AvailableStatistics

SelectPorts StatisticsHandle PortHandles
ListSelectedPorts StatisticsHandle -> SelectedPorts

GetAccumulatedValues StatisticsHandle -> SamplingInterval
StatisticsResults
Summary
 Gets SONET-layer statistics from selected test ports during or after a
test.
Parameters
Long The handle that is returned by a call to AgtStatisticsList Add
StatisticsHandle
AGT_STATISTICS_XM_SONET.

Statistics list<enum> List of statistics to be selected.

SelectedStatistics list<enum> The statistics you have selected so far.

PortHandles list<long> A list of the test ports on which statistics have to be gathered.

SelectedPorts list<long> The list of test ports selected.

SamplingInterval Long The number of measurement intervals that have elapsed since
statistics collection started. Provides a means to order and
correlate results, and derive average statistics per interval
141

6 Objects
SelectionChange Enum EAgtStatisticsSelectionChange
Valid values are:
AGT_STATS_SELECTION_CHANGED
AGT_PORT_SELECTION_CHANGED

StatisticsResults List<double> Ordered list of statistics by port first and channel thereafter.

AvailableStatistics List<enum> The SONET statistics you can get for the selected ports (for
details, see EAgtXmSonetStatistics):

Analysis Mode Statistics
GR.253 Section Layer Count

AGT_XM_SONET_GR253_SECTION_SEFS_COUNT
AGT_XM_SONET_GR253_SECTION_NEAR_CV_COUNT
AGT_XM_SONET_GR253_SECTION_NEAR_ES_COUNT
AGT_XM_SONET_GR253_SECTION_NEAR_SES_COUNT

GR.253 Line Layer Counts

AGT_XM_SONET_GR253_LINE_NEAR_CV_COUNT
AGT_XM_SONET_GR253_LINE_NEAR_ES_COUNT
AGT_XM_SONET_GR253_LINE_NEAR_SES_COUNT
AGT_XM_SONET_GR253_LINE_NEAR_UAS_COUNT
AGT_XM_SONET_GR253_LINE_FAR_CV_COUNT
AGT_XM_SONET_GR253_LINE_FAR_ES_COUNT
AGT_XM_SONET_GR253_LINE_FAR_SES_COUNT
AGT_XM_SONET_GR253_LINE_FAR_UAS_COUNT
AGT_XM_SONET_GR253_LINE_PUAS_COUNT
142 API Programming Guide

Objects 6
G828 Section Layer Counts

AGT_XM_SONET_G828_SECTION_NEAR_EB_COUNT
AGT_XM_SONET_G828_SECTION_NEAR_ES_COUNT
AGT_XM_SONET_G828_SECTION_NEAR_SES_COUNT
AGT_XM_SONET_G828_SECTION_NEAR_BBE_COUNT
AGT_XM_SONET_G828_SECTION_NEAR_SEP_COUNT
AGT_XM_SONET_G828_SECTION_NEAR_UAS_COUNT

AGT_XM_SONET_G828_SECTION_NEAR_ES_RATIO
AGT_XM_SONET_G828_SECTION_NEAR_SES_RATIO
AGT_XM_SONET_G828_SECTION_NEAR_BBE_RATIO
AGT_XM_SONET_G828_SECTION_NEAR_SEPI_RATIO

G828 Line Layer Counts

AGT_XM_SONET_G828_LINE_NEAR_EB_COUNT
AGT_XM_SONET_G828_LINE_NEAR_ES_COUNT
AGT_XM_SONET_G828_LINE_NEAR_SES_COUNT
AGT_XM_SONET_G828_LINE_NEAR_BBE_COUNT
AGT_XM_SONET_G828_LINE_NEAR_SEP_COUNT
AGT_XM_SONET_G828_LINE_NEAR_UAS_COUNT

AGT_XM_SONET_G828_LINE_NEAR_ES_RATIO
AGT_XM_SONET_G828_LINE_NEAR_SES_RATIO
AGT_XM_SONET_G828_LINE_NEAR_BBE_RATIO
AGT_XM_SONET_G828_LINE_NEAR_SEPI_RATIO

AGT_XM_SONET_G828_LINE_FAR_EB_COUNT
AGT_XM_SONET_G828_LINE_FAR_ES_COUNT
AGT_XM_SONET_G828_LINE_FAR_SES_COUNT
AGT_XM_SONET_G828_LINE_FAR_BBE_COUNT
AGT_XM_SONET_G828_LINE_FAR_SEP_COUNT
AGT_XM_SONET_G828_LINE_FAR_UAS_COUNT

AGT_XM_SONET_G828_LINE_FAR_ES_RATIO
AGT_XM_SONET_G828_LINE_FAR_SES_RATIO
AGT_XM_SONET_G828_LINE_FAR_BBE_RATIO
AGT_XM_SONET_G828_LINE_FAR_SEPI_RATIO

AGT_XM_SONET_G828_LINE_PUAS_COUNT
API Programming Guide 143

6 Objects
AGT_XM_SONET_GR253_PATH_NEAR_CV_COUNT
AGT_XM_SONET_GR253_PATH_NEAR_ES_COUNT
AGT_XM_SONET_GR253_PATH_NEAR_SES_COUNT
AGT_XM_SONET_GR253_PATH_NEAR_UAS_COUNT

AGT_XM_SONET_GR253_PATH_FAR_CV_COUNT
AGT_XM_SONET_GR253_PATH_FAR_ES_COUNT
AGT_XM_SONET_GR253_PATH_FAR_SES_COUNT
AGT_XM_SONET_GR253_PATH_FAR_UAS_COUNT
AGT_XM_SONET_GR253_PATH_PUAS_COUNT

AGT_XM_SONET_G828_PATH_NEAR_EB_COUNT
AGT_XM_SONET_G828_PATH_NEAR_ES_COUNT
AGT_XM_SONET_G828_PATH_NEAR_SES_COUNT
AGT_XM_SONET_G828_PATH_NEAR_BBE_COUNT
AGT_XM_SONET_G828_PATH_NEAR_SEP_COUNT
AGT_XM_SONET_G828_PATH_NEAR_UAS_COUNT

AGT_XM_SONET_G828_PATH_NEAR_ES_RATIO
AGT_XM_SONET_G828_PATH_NEAR_SES_RATIO
AGT_XM_SONET_G828_PATH_NEAR_BBE_RATIO
AGT_XM_SONET_G828_PATH_NEAR_SEPI_RATIO

AGT_XM_SONET_G828_PATH_FAR_EB_COUNT
AGT_XM_SONET_G828_PATH_FAR_ES_COUNT
AGT_XM_SONET_G828_PATH_FAR_SES_COUNT
AGT_XM_SONET_G828_PATH_FAR_BBE_COUNT
AGT_XM_SONET_G828_PATH_FAR_SEP_COUNT
AGT_XM_SONET_G828_PATH_FAR_UAS_COUNT

AGT_XM_SONET_G828_PATH_FAR_ES_RATIO
AGT_XM_SONET_G828_PATH_FAR_SES_RATIO
AGT_XM_SONET_G828_PATH_FAR_BBE_RATIO
AGT_XM_SONET_G828_PATH_FAR_SEPI_RATIO

AGT_XM_SONET_G828_PATH_PUAS_COUNT
144 API Programming Guide

Objects 6
Section/Line Statistics
AGT_XM_SONET_B1_ERROR_COUNT
AGT_XM_SONET_B1_ERROR_RATIO
AGT_XM_SONET_B1_ERROR_SECONDS
AGT_XM_SONET_B2_ERROR_COUNT
AGT_XM_SONET_B2_ERROR_RATIO
AGT_XM_SONET_B2_ERROR_SECONDS
AGT_XM_SONET_REIL_ERROR_COUNT
AGT_XM_SONET_REIL_ERROR_RATIO
AGT_XM_SONET_REIL_ERROR_SECONDS

Enum AGT_XM_SONET_LOS_ERRORED_SECONDS
AGT_XM_SONET_LOF_ERRORED_SECONDS
AGT_XM_SONET_SEF_ERRORED_SECONDS
AGT_XM_SONET_AISL_ERRORED_SECONDS
AGT_XM_SONET_RDIL_ERRORED_SECONDS

High Order Statistics
AGT_XM_SONET_B3_ERROR_COUNT
AGT_XM_SONET_B3_ERROR_RATIO
AGT_XM_SONET_B3_ERROR_SECONDS

AGT_XM_SONET_BIT_ERROR_COUNT
AGT_XM_SONET_BIT_ERROR_RATIO
AGT_XM_SONET_BIT_ERROR_SECONDS

AGT_XM_SONET_REIP_ERROR_COUNT
AGT_XM_SONET_REIP_ERROR_RATIO
AGT_XM_SONET_REIP_ERROR_SECONDS

AGT_XM_SONET_LOPP_ERRORED_SECONDS
AGT_XM_SONET_AISP_ERRORED_SECONDS
AGT_XM_SONET_RDIP_ERRORED_SECONDS
AGT_XM_SONET_UNEQP_ERRORED_SECONDS
AGT_XM_SONET_PSL_ERRORED_SECONDS
AGT_XM_SONET_PDIP_ERRORED_SECONDS
AGT_XM_SONET_POINTER_ACTIVITY_ERRORED_
SECONDS
AGT_XM_SONET_POINTER_INC_COUNT
AGT_XM_SONET_POINTER_DEC_COUNT

AGT_XM_SONET_SERVICE_DISRUPTION_LAST_TIME
AGT_XM_SONET_SERVICE_DISRUPTION_COUNT
AGT_XM_SONET_SERVICE_DISRUPTION_MAX_TIME
AGT_XM_SONET_H4LOM_SECONDS
API Programming Guide 145

146

6 Objects
VT/TU Parameters
Available Statistics List <enum> The SONET statistics you can get for the selected ports.

Low Order Statistics
AGT_XM_SONET_LO_BIP_ERROR_COUNT
AGT_XM_SONET_LO_BIP_ERRORED_SECONDS
AGT_XM_SONET_LO_BIP_ERROR_RATIO
AGT_XM_SONET_LO_REIV_ERROR_COUNT
AGT_XM_SONET_LO_REIV_ERRORED_SECONDS
AGT_XM_SONET_LO_REIV_ERROR_RATIO
AGT_XM_SONET_LO_BIT_ERROR_COUNT
AGT_XM_SONET_LO_BIT_ERRORED_SECONDS
AGT_XM_SONET_LO_BIT_ERROR_RATIO
AGT_XM_SONET_LO_SERVICE_DISRUPTION_LAST_TIME
AGT_XM_SONET_LO_SERVICE_DISRUPTION_COUNT
AGT_XM_SONET_LO_SERVICE_DISRUPTION_MAX_TIME
AGT_XM_SONET_LO_POINTER_ACTIVITY_ERRORED_SECONDS
AGT_XM_SONET_LO_AISV_ERRORED_SECONDS
AGT_XM_SONET_LO_LOPV_ERRORED_SECONDS
AGT_XM_SONET_LO_RDIV_ERRORED_SECONDS
AGT_XM_SONET_LO_UNEQV_ERRORED_SECONDS
AGT_XM_SONET_LO_RFIV_ERRORED_SECONDS
AGT_XM_SONET_LO_PSL_ERRORED_SECONDS
Details

1 Create a new statistics handle for statistics (both port and channel
level) using:

• AgtStatisticsList::Add AGT_STATISTICS_XM_SONET for
Sonet

• AgtStatisticsList::Add AGT_STATISTICS_XM_SDH for Sdh
API Programming Guide

Objects 6

API Programming Guide
2 Add selected statistics to the statistics handle using:

• AgtXmSonetStatistics::SelectStatistics StatisticsHandle
List<Values from EAgtXmSonetStatistics>

• AgtXmSdhStatistics::SelectStatistics StatisticsHandle
List<Values from EAgtXmSdhStatistics>

3 Select the ports to collect the statistics using:

• AgtXmSonetStatistics::SelectPorts

• AgtXmSdhStatistics::SelectPorts

4 Each port has a default (but modifiable) "Received Selected" channel
mask. Change the channel selections using:

• AgtXmSonetChannelConfig::SelectChannels

• AgtXmSdhChannelConfig::SelectChannels

5 Use AgtTestController::StartTest to start measuring the selected
statistics simultaneously over the selected test ports. You can then
poll the system for statistical results, using:

• AgtXmSonetStatistics::GetAccumulatedValues

• AgtXmSdhStatistics::GetAccumulatedValues

6 Use AgtXmtStatus to check whether an error occurred in the last
sampling interval.

Error Codes

0 Success
1 Invalid parameter:

• StatisticsHandle: Does not correspond to an item in
AgtStatisticsList.

• Statistics: The list of statistics you selected contains a statistic that
is not defined.

• PortHandles: The list of ports you selected contains a port handle
that was not returned by AgtPortSelector, or one that has since
been removed from the current session.
147

6 Objects
AgtXmSdhStatistics
Summary
148
This interface deals with SDH statistics. It is available in both Terminal
and Thru Mode.

Each port that is selected for collecting statistics will use the Received
Selected channel mask associated with the port. For changing the
channel selection, AgtXmSdhChannelConfig::SelectChannels and other
functions in this interface are used.
Syntax
 AgtInvoke AgtXmSdhStatistics Method InParams -> OutParams
Methods
 SelectStatistics StatisticsHandle Statistics
ListSelectedStatistics StatisticsHandle ->
SelectedStatistics
ListAvailableStatistics -> AvailableStatistics

SelectPorts StatisticsHandle PortHandles
ListSelectedPorts StatisticsHandle -> SelectedPorts

GetAccumulatedValues StatisticsHandle -> SamplingInterval
StatisticsResults
Summary
 Gets SDH statistics from selected test ports during or after a test.
Parameters
StatisticsHandle Long The handle that was returned when you called AgtStatisticsList to
add a XM SDH statistics item (AGT_STATISTICS_XM_SDH) to the
master list. You may also call AgtStatisticsList to list existing
handles.It is not possible to have port and channel statistics in the
same handle.

Statistics list<enum> The statistics you want to gather.

SelectedStatistics list<enum> The statistics you have selected so far.

PortHandles list<long> A list of the test ports on which you want statistics.

SelectedPorts list<long> The test ports you have selected so far.

SamplingInterval Long The number of measurement intervals that have elapsed since
statistics collection started. Provides a means to order and correlate
results, and derive average statistics per interval
API Programming Guide

Objects 6
SelectionChange Enum EAgtStatisticsSelectionChange
Valid values are:
AGT_STATS_SELECTION_CHANGED
AGT_PORT_SELECTION_CHANGED

StatisticsResults list<double> Ordered by port first and channels thereafter. Port 1. All the statistics
which are not valid have -1 as placeholder.

AvailableStatistics List<enum
values>

The SDH statistics you can get for the selected ports (for details, see
EAgtXmSdhStatistics):

MSOH/RSOH Statistics
AGT_XM_SDH_B1_ERROR_COUNT
AGT_XM_SDH_B1_ERROR_RATIO
AGT_XM_SDH_B1_ERROR_SECONDS
AGT_XM_SDH_B2_ERROR_COUNT
AGT_XM_SDH_B2_ERROR_RATIO
AGT_XM_SDH_B2_ERROR_SECONDS
AGT_XM_SDH_MSREI_ERROR_COUNT
AGT_XM_SDH_MSREI_ERROR_RATIO
AGT_XM_SDH_MSREI_ERROR_SECONDS

AGT_XM_SDH_LOS_ERRORED_SECONDS
AGT_XM_SDH_LOF_ERRORED_SECONDS
AGT_XM_SDH_OOF_ERRORED_SECONDS
AGT_XM_SDH_MSAIS_ERRORED_SECONDS
AGT_XM_SDH_MSRDI_ERRORED_SECONDS

Analysis Mode Statistics

GR.253 Section Layer
AGT_XM_SDH_GR253_REGENERATOR_SEFS_COUNT
AGT_XM_SDH_GR253_REGENERATOR_NEAR_CV_COUNT
AGT_XM_SDH_GR253_REGENERATOR_NEAR_ES_COUNT
AGT_XM_SDH_GR253_REGENERATOR_NEAR_SES_COUNT
API Programming Guide 149

6 Objects
GR.253 Line Layer

AGT_XM_SDH_GR253_MULTIPLEX_NEAR_CV_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_NEAR_ES_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_NEAR_SES_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_NEAR_UAS_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_FAR_CV_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_FAR_ES_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_FAR_SES_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_FAR_UAS_COUNT
AGT_XM_SDH_GR253_MULTIPLEX_PUAS_COUNT

G828 Section Layer

AGT_XM_SDH_G828_REGENERATOR_NEAR_EB_COUNT
AGT_XM_SDH_G828_REGENERATOR_NEAR_ES_COUNT
AGT_XM_SDH_G828_REGENERATOR_NEAR_SES_COUNT
AGT_XM_SDH_G828_REGENERATOR_NEAR_BBE_COUNT
AGT_XM_SDH_G828_REGENERATOR_NEAR_SEP_COUNT
AGT_XM_SDH_G828_REGENERATOR_NEAR_UAS_COUNT

AGT_XM_SDH_G828_REGENERATOR_NEAR_ES_RATIO
AGT_XM_SDH_G828_REGENERATOR_NEAR_SES_RATIO
AGT_XM_SDH_G828_REGENERATOR_NEAR_BBE_RATIOAG
T_XM_SDH_G828_REGENERATOR_NEAR_SEPI_RATIO

G828 Line Layer

AGT_XM_SDH_G828_MULTIPLEX_NEAR_EB_COUNT
AGT_XM_SDH_G828_MULTIPLEX_NEAR_ES_COUNT
AGT_XM_SDH_G828_MULTIPLEX_NEAR_SES_COUNT
AGT_XM_SDH_G828_MULTIPLEX_NEAR_BBE_COUNT
AGT_XM_SDH_G828_MULTIPLEX_NEAR_SEP_COUNT
AGT_XM_SDH_G828_MULTIPLEX_NEAR_UAS_COUNT
150 API Programming Guide

Objects 6
AGT_XM_SDH_G828_MULTIPLEX_NEAR_ES_RATIO
AGT_XM_SDH_G828_MULTIPLEX_NEAR_SES_RATIO
AGT_XM_SDH_G828_MULTIPLEX_NEAR_BBE_RATIO
AGT_XM_SDH_G828_MULTIPLEX_NEAR_SEPI_RATIO

AGT_XM_SDH_G828_MULTIPLEX_FAR_EB_COUNT
AGT_XM_SDH_G828_MULTIPLEX_FAR_ES_COUNT
AGT_XM_SDH_G828_MULTIPLEX_FAR_SES_COUNT
AGT_XM_SDH_G828_MULTIPLEX_FAR_BBE_COUNT
AGT_XM_SDH_G828_MULTIPLEX_FAR_SEP_COUNT
AGT_XM_SDH_G828_MULTIPLEX_FAR_UAS_COUNT

AGT_XM_SDH_G828_MULTIPLEX_FAR_ES_RATIO
AGT_XM_SDH_G828_MULTIPLEX_FAR_SES_RATIO
AGT_XM_SDH_G828_MULTIPLEX_FAR_BBE_RATIO
AGT_XM_SDH_G828_MULTIPLEX_FAR_SEPI_RATIO

AGT_XM_SDH_G828_MULTIPLEX_PUAS_COUNT

GR253 Path Layer
AGT_XM_SDH_GR253_PATH_NEAR_CV_COUNT
AGT_XM_SDH_GR253_PATH_NEAR_ES_COUNT
AGT_XM_SDH_GR253_PATH_NEAR_SES_COUNT
AGT_XM_SDH_GR253_PATH_NEAR_UAS_COUNT
AGT_XM_SDH_GR253_PATH_FAR_CV_COUNT
AGT_XM_SDH_GR253_PATH_FAR_ES_COUNT
AGT_XM_SDH_GR253_PATH_FAR_SES_COUNT
AGT_XM_SDH_GR253_PATH_FAR_UAS_COUNT
AGT_XM_SDH_GR253_PATH_PUAS_COUNT
API Programming Guide 151

6 Objects
G828 Path Layer
AGT_XM_SDH_G828_PATH_NEAR_EB_COUNT
AGT_XM_SDH_G828_PATH_NEAR_ES_COUNT
AGT_XM_SDH_G828_PATH_NEAR_SES_COUNT
AGT_XM_SDH_G828_PATH_NEAR_BBE_COUNT
AGT_XM_SDH_G828_PATH_NEAR_SEP_COUNT
AGT_XM_SDH_G828_PATH_NEAR_UAS_COUNT

AGT_XM_SDH_G828_PATH_NEAR_ES_RATIO
AGT_XM_SDH_G828_PATH_NEAR_SES_RATIO
AGT_XM_SDH_G828_PATH_NEAR_BBE_RATIO
AGT_XM_SDH_G828_PATH_NEAR_SEPI_RATIO

AGT_XM_SDH_G828_PATH_FAR_EB_COUNT
AGT_XM_SDH_G828_PATH_FAR_ES_COUNT
AGT_XM_SDH_G828_PATH_FAR_SES_COUNT
AGT_XM_SDH_G828_PATH_FAR_BBE_COUNT
AGT_XM_SDH_G828_PATH_FAR_SEP_COUNT
AGT_XM_SDH_G828_PATH_FAR_UAS_COUNT

AGT_XM_SDH_G828_PATH_FAR_ES_RATIO
AGT_XM_SDH_G828_PATH_FAR_SES_RATIO
AGT_XM_SDH_G828_PATH_FAR_BBE_RATIO
AGT_XM_SDH_G828_PATH_FAR_SEPI_RATIO

AGT_XM_SDH_G828_PATH_PUAS_COUNT

AvailableStatisticslist Enum High Order Statistics
AGT_XM_SDH_B3_ERROR_COUNT
AGT_XM_SDH_B3_ERROR_RATIO
AGT_XM_SDH_B3_ERRORED_SECONDS

AGT_XM_SDH_BIT_ERROR_COUNT
AGT_XM_SDH_BIT_ERROR_RATIO
AGT_XM_SDH_BIT_ERRORED_SECONDS

AGT_XM_SDH_HPREI_ERROR_COUNT
AGT_XM_SDH_HPREI_ERROR_RATIO
AGT_XM_SDH_HPREI_ERRORED_SECONDS
152 API Programming Guide

Objects 6
AGT_XM_SDH_AULOP_ERRORED_SECONDS
AGT_XM_SDH_AUAIS_ERRORED_SECONDS
AGT_XM_SDH_HPRDI_ERRORED_SECONDS
AGT_XM_SDH_HPUNEQ_ERRORED_SECONDS
AGT_XM_SDH_POINTER_ACTIVITY_ERRORED_SECONDS
AGT_XM_SDH_PSL_ERRORED_SECONDS
AGT_XM_SDH_PDIP_ERRORED_SECONDS
AGT_XM_SDH_POINTER_INC_COUNT
AGT_XM_SDH_POINTER_DEC_COUNT

AGT_XM_SDH_SERVICE_DISRUPTION_MAX_TIME
AGT_XM_SDH_SERVICE_DISRUPTION_LAST_TIME
AGT_XM_SDH_SERVICE_DISRUPTION_COUNT
AGT_XM_SDH_H4LOM_SECONDS
API Programming Guide
VT/TU Parameters
The SDH statistics you can get for the selected ports.
Low Order Statistics

AGT_XM_SDH_TU_BIP_ERROR_COUNT
AGT_XM_SDH_TU_BIP_ERRORED_SECONDS
AGT_XM_SDH_TU_BIP_ERROR_RATIO
AGT_XM_SDH_LPREI_ERROR_COUNT
AGT_XM_SDH_LPREI_ERRORED_SECONDS
AGT_XM_SDH_LPREI_ERROR_RATIO
AGT_XM_SDH_LO_BIT_ERROR_COUNT
AGT_XM_SDH_LO_BIT_ERRORED_SECONDS
AGT_XM_SDH_LO_BIT_ERROR_RATIO
AGT_XM_SDH_LO_SERVICE_DISRUPTION_LAST_TIME
AGT_XM_SDH_LO_SERVICE_DISRUPTION_COUNT
AGT_XM_SDH_LO_SERVICE_DISRUPTION_MAX_TIME
AGT_XM_SDH_LO_PTR_ACT_SECONDS
AGT_XM_SDH_TU_AIS_SECONDS
AGT_XM_SDH_TU_LOP_SECONDS
AGT_XM_SDH_LP_RDI_SECONDS
AGT_XM_SDH_LP_UNEQ_SECONDS
AGT_XM_SDH_LP_RFI_SECONDS
AGT_XM_SDH_LO_PSL_SECONDS
AGT_XM_SDH_LO_PDH_AIS_SECONDS
AGT_XM_SDH_LO_PDH_LOF_SECONDS
153

154

6 Objects
Details

1 Create a new statistics handle for statistics (both port and channel
level) using:

• AgtStatisticsList::Add AGT_STATISTICS_XM_SONET for
Sonet

• AgtStatisticsList::Add AGT_STATISTICS_XM_SDH for Sdh

2 Add selected statistics to the statistics handle using:

• AgtXmSonetStatistics::SelectStatistics StatisticsHandle
List<Values from EAgtXmSonetStatistics>

• AgtXmSdhStatistics::SelectStatistics StatisticsHandle
List<Values from EAgtXmSdhStatistics>

3 Select the ports to collect the statistics using:

• AgtXmSonetStatistics::SelectPorts

• AgtXmSdhStatistics::SelectPorts

4 Each port has a default (but modifiable) "Received Selected" channel
mask. Change the channel selections using:

• AgtXmSonetChannelConfig::SelectChannels

• AgtXmSdhChannelConfig::SelectChannels

5 Use AgtTestController::StartTest to start measuring the selected
statistics simultaneously over the selected test ports. You can then
poll the system for statistical results, using:

• AgtXmSonetStatistics::GetAccumulatedValues

• AgtXmSdhStatistics::GetAccumulatedValues

6 Use AgtXmtStatus to check whether an error occurred in the last
sampling interval.
API Programming Guide

Objects 6

API Programming Guide
Error Codes

0 Success
1 Invalid parameter:

• StatisticsHandle: Does not correspond to an item in
AgtStatisticsList.

• Statistics: The list of statistics you selected contains a statistic that
is not defined.

• PortHandles: The list of ports you selected contains a port handle
that was not returned by AgtPortSelector, or one that has since
been removed from the current session.
155

6 Objects
AgtXmSonetChannelConfig
Summary
156
This interface is used to configure the channel mappings on the
Transmit & Receive side for a port. When the port is added, the system
assigns a default channel configuration, which is the single largest
channel type that can be accomodated in the envelope for the signal rate
of the port. After that, the user can change the configuration, using the
methods provided in the interface below.

A Channel is denoted by an Enumerated type, like
AGT_XM_SONET_CHANNEL_STS24C. The channel position is
denoted by the starting STS1 position of the channel.

The user can select and unselect channels, within a configuration. All
the unselected channels are transmitted with content of 0. The user can
also specify Channel Masks, which are a list of channel start positions.
Channel Masks can be provided for Statistics, ErrorAlarm, Transmit,
and Receive. By using Channel Masks, the user can control which
channels are going to be included in the respective functionality for the
masks, without altering the channel configuration. The default Channel
Mask is ALL selected.

Syntax

AgtInvoke AgtXmSonetChannelConfig Method InParams ->
OutParams
Methods
 SetTxChannelConfiguration PortHandle ChannelList

GetTxChannelConfiguration PortHandle -> ChannelList

SetRxChannelConfiguration PortHandle ChannelList

GetRxChannelConfiguration PortHandle -> ChannelList

GetTxChannelAtPosition PortHandle Sts1Pos -> ChannelType

GetRxChannelAtPosition PortHandle Sts1Pos -> ChannelType

SelectChannel PortHandle ChannelMaskType Sts1Pos
Note: Sts1Pos is same as channel Id. i.e. a particular
channel in a port can be uniquely identified by its start
Sts1Pos(ition).

UnSelectChannel PortHandle ChannelMaskType Sts1Pos

SelectChannels PortHandle ChannelMaskType Sts1PosList
API Programming Guide

Objects 6

API Programming Guide
UnSelectChannels PortHandle ChannelMaskType Sts1PosList

SelectChannelsInRange PortHandle ChannelMaskType
StartSts1Pos EndSts1Pos

UnSelectChannelsInRange PortHandle ChannelMaskType
StartSts1Pos EndSts1Pos

SelectAllChannels PortHandle ChannelMaskType

UnSelectAllChannels PortHandle ChannelMaskType

IsChannelSelected PortHandle ChannelMaskType Sts1Pos

GetSelectedChannels PortHandle ChannelMaskType ->
Sts1PosList

ChangeTxChannelAtPosition PortHandle Sts1Pos ChannelType

ChangeRxChannelAtPosition PortHandle Sts1Pos ChannelType

GetTxChannelStartPosition PortHandle Sts1Pos -> StartSts1Pos

GetRxChannelStartPosition PortHandle Sts1Pos -> StartSts1Pos

GetTxChannelStartPositions PortHandle ->
NumConfiguredChannels ConfiguredChannelsList
GetRxChannelStartPositions PortHandle ->
NumConfiguredChannels ConfiguredChannelsList

InvertChannelMask PortHandle ChannelMaskType

EnableTxStuffColumnOverWrite PortHandle

DisableTxStuffColumnOverWrite PortHandle

EnableRxStuffColumnOverWrite PortHandle

DisableRxStuffColumnOverWrite PortHandle

IsTxStuffColumnOverWriteEnabled PortHandle

IsRxStuffColumnOverWriteEnabled PortHandle

Note: StuffColumnOverwriteMode in only valid for SONET and
NOT for SDH. And in particular it affects only STS-1 channels
in the payload.

AutoDiscoverRxSignalStructure PortHandle

UndoAutoDiscoverRxSignalStructure PortHandle

GetAutoDiscoverRxSignalStatePortHandle -> State
157

6 Objects
Parameters
ChannelList List of enums EAgtXmSonetChannel
Size of channels, which will be placed by the system beginning from
first STS-1. {3,6,3,12,1,1,1,3,6,24} Implies an STS-3 followed by an
STS-6, STS-3 and so on. If the sequence is not legal, the system will
return an error.

ChannelType Enum EAgtXmSonetChannel
AGT_SONET_CHANNEL_STS1 = AGT_SDH_CHANNEL_AU3
AGT_SONET_CHANNEL_STS3C = AGT_SDH_CHANNEL_AU4
AGT_SONET_CHANNEL_STS6C =
AGT_SDH_CHANNEL_AU4_2C
AGT_SONET_CHANNEL_STS9C =
AGT_SDH_CHANNEL_AU4_3C
AGT_SONET_CHANNEL_STS12C =
AGT_SDH_CHANNEL_AU4_4C
AGT_SONET_CHANNEL_STS24C =
AGT_SDH_CHANNEL_AU4_8C
AGT_SONET_CHANNEL_STS48C =
AGT_SDH_CHANNEL_AU4_16C
AGT_SONET_CHANNEL_STS192C =
AGT_SDH_CHANNEL_AU_464C

Sts1Pos Long Can vary from [1-192] for the current system (depending on the line
rate being used)
[1-192] for 10Gbps
[1-48] for 2488 Mbps
[1-12] for 622 Mbps
[1-3] for 155 Mbps

NewPortHandle Long Existing and valid port handle for which the new channel mask would
be created.

ChannelMaskTypeEnum EAgtXmChannelMask
AGT_XM_CHANNELMASK_ERROR_ALARM
AGT_XM_CHANNELMASK_SELECTED_TX
AGT_XM_CHANNELMASK_SELECTED_RX

ChannelMaskTypeEAgtChannel
MaskType

Variable of EAgtChannelMaskType
158 API Programming Guide

Objects 6
Sts1Pos Long Can vary from [1-192] for the current system (depending on the line
rate being used)[1-192] for 10Gbps[1-48] for 2488 Mbps[1-12] for
622 Mbps[1-3] for 155 Mbps

Sts1PosList list<longs> {i1, i2, i3, i4, i5, i6}
Valid values are from [1-192] for 10GHz.

State Enum
EAgtXmAuto
DiscoverSignal
State

AGT_XM_NEVER_RUN_BEFORE
AGT_XM_RUNNING
AGT_XM_COMPLETE_FAIL
AGT_XM_COMPLETE_SUCCESS
API Programming Guide 159

6 Objects
AgtXmSdhChannelConfig
Summary
160
This interface is the SDH equivalent of the SONET one. The only
difference between these currently is in the type of parameters they
accept. Refer to the AgtXmSonetChannelConfig Interface for further
information.
Syntax
 AgtInvoke AgtXmSdhChannelConfig Method InParams -> OutParams
Methods
 SetTxChannelConfiguration PortHandle ChannelList

GetTxChannelConfiguration PortHandle -> ChannelList

SetRxChannelConfiguration PortHandle ChannelList

GetRxChannelConfiguration PortHandle -> ChannelList

GetTxChannelAtPosition PortHandle Sts1Pos -> ChannelType

GetRxChannelAtPosition PortHandle Sts1Pos -> ChannelType

SelectChannel PortHandle ChannelMaskType Sts1Pos
Note: Sts1Pos is same as channel Id. i.e. a particular
channel in a port can be uniquely identified by its start
Sts1Pos(ition).

UnSelectChannel PortHandle ChannelMaskType Sts1Pos

SelectChannels PortHandle ChannelMaskType Sts1PosList

UnSelectChannels PortHandle ChannelMaskType Sts1PosList

SelectChannelsInRange PortHandle ChannelMaskType
StartSts1Pos EndSts1Pos

UnSelectChannelsInRange PortHandle ChannelMaskType
StartSts1Pos EndSts1Pos

SelectAllChannels PortHandle ChannelMaskType

UnSelectAllChannels PortHandle ChannelMaskType

IsChannelSelected PortHandle ChannelMaskType Sts1Pos
->IsSelected

GetSelectedChannels PortHandle ChannelMaskType ->
Sts1PosList

ChangeTxChannelAtPosition PortHandle Sts1Pos ChannelType

ChangeRxChannelAtPosition PortHandle Sts1Pos ChannelType

GetTxChannelStartPosition PortHandle Sts1Pos -> StartSts1Pos
API Programming Guide

Objects 6

API Programming Guide
GetRxChannelStartPosition PortHandle Sts1Pos -> StartSts1Pos

GetTxChannelStartPositions PortHandle ->
NumConfiguredChannels ConfiguredChannelsList

GetRxChannelStartPositions PortHandle ->
NumConfiguredChannels ConfiguredChannelsList

InvertChannelMask PortHandle ChannelMaskType

CopyChannelMask SrcPortHandle SrcChannelMaskType
DestPortHandle DestChannelMaskType

AutoDiscoverRxSignalStructure PortHandle

UndoAutoDiscoverRxSignalStructure PortHandle
161

6 Objects
AgtXmBurstControl
Summary
162
This interface exposes the commands to control the timed and pulse
modes for the error and alarm generation. The alarm or error selection
is controlled by the AgtXmSonetAlarm and AgtXmSonetError
interfaces (and their SDH counterparts). This interface allows the
parameters for the timed and pulse modes to be set.
Syntax
 AgtInvoke AgtXmBurstControl Method InParams -> OutParams
Methods
 SetTimedParameters PortHandle OnPeriod OffPeriod RepeatCount

GetTimedParameters PortHandle -> OnPeriod OffPeriod
RepeatCount
Default parameters will be a single burst of 1 second
(OnPeriod = 1, OffPeriod = 0, RepeatCount = 1). Error Returns
E_AGT_RESOURCE_IN_USE implies that the timer is running;
E_AGT_OUT_OF_BOUNDS if any of the input parameters are out
of range.

StartTimedBurst PortHandle

StopTimedBurst PortHandle

IsTimedBurstRunning PortHandle -> BOOL
Error returns E_AGT_INVALID_OPERATION if the timer is not in
the correct mode to start, i.e. neither alarms nor errors are
configured to use it or they are not switched on.

SetSinglePulseParameters PortHandle PulseCount

GetSinglePulseParameters PortHandle -> PulseCount
Default value PulseCount = 1. Error Returns
E_AGT_OUT_OF_BOUNDS if PulseCount is out of range. (For the
future. may return E_AGT_OUT_OF_BOUNDS if set
PulsedParameters has set the OffCount or OnCount non-zero.)

StartPulsedBurst PortHandle
The pulsed burst is active for such a short time that there
is no requirement for a stop or status methods. Error
returns E_AGT_INVALID_OPERATION if the pulse generator is
not in the correct mode to start, i.e. alarms are configured
to use it and they are not switched on, or LOS alarm type is
selected (which uses a different mechanism, and not
available in pulsed mode).

SetLosTimedParameters PortHandle LosPeriod

GetLosTimedParameters PortHandle -> LosPeriod
Default LosPeriod = 1.0mSec. Error Returns
E_AGT_OUT_OF_BOUNDS if LosPeriod is out of range.

StartLosTimedBurst PortHandle
API Programming Guide

Objects 6

API Programming Guide
The timed burst is active for such a short time that there is
no requirement for a stop or status methods. Error returns
E_AGT_INVALID_OPERATION if the LOS timer is not in the
correct mode to start, i.e. alarms are configured to use it
and they are not switched on, and LOS alarm type is selected.
Parameters
OnPeriod Long Time in seconds that the error/alarm is generated for. Range 1 -
10000.

OffPeriod Long Time in seconds that the error/alarm is not generated. Range 1 -
10000 if RepeatCount > 1. May be 0 if RepeatCount = 1 to give a
single timed burst of the error/alarm.

RepeatCount Long Number of times the on/off cycle is repeated. Range 1-10000.

PulseCount Long Pulse length in frames. Range 1-64. Same as 'InitialCount' for
multiple pulse mode.

InitialCount Long Initial (or single) pulse length in frames. Range 1-64

OffCount Long Off period length in frames. Normal range 1-64, 0 for single pulse
mode.

OnCount Long On period length in frames. Normal range 1-64, 0 for single pulse
mode.

LosPeriod Long Time in microseconds that LOS alarm to be generated. Range 0.1 to
110 in steps of 0.1mSec.
163

6 Objects
AgtOpticalInterface
Summary
164
This interface Turns on/off optical transmit lasers, selects a
transmit/receive mode, and selects the clock source.
Syntax
 AgtInvoke AgtOpticalInterface Method InParams -> OutParams
Methods
 AllLasersOn
AllLasersOff

LaserOn PortHandle
LaserOff PortHandle
IsLaserOn PortHandle -> LaserState

SetPortMode PortHandle PortMode
GetPortMode PortHandle -> PortMode

SetClockSource PortHandle ClockSource
GetClockSource PortHandle -> ClockSource
GetClockState PortHandle -> ClockState

GetOpticalPowerLevel PortHandle -> PowerLevel
GetOpticalPowerLimits PortHandle -> PowerLimitsList
Parameters
rtHandle Long A handle to a test port, as returned by
Po
AgtPortSelector.

LaserState Bool Indicates whether the transmit laser is on:
1-- Laser is On
0-- Laser is Off

PortMode Enum • AGT_MODE_NORMAL: The module does
Multi-channel, mixed payload generation
with some patterns, errors and alarms.

• AGT_MODE_LOOPBACK: The test port
loops back internally, receiving its own
transmitted data (Tx -> Rx).

• AGT_MODE_LOOPBACK: is Not
supported by Alchemy cards.

• AGT_MODE_MONITOR: The module
Re-transmits received payload, and has the
ability to add some errors/alarms to any/all
channels as they pass.
API Programming Guide

Objects 6
ClockSource Enum The clock source for the transmitted signal:
• AGT_CLOCK_INTERNAL (default):

Synchronised with the clock inside the first
test module in the Clock daisy chain. The
first module uses an internal 10 MHz (+/- 10
ppm) clock and sends heartbeat pulses every
100 ms to synchronise all test modules on the
same Clock line.

• AGT_CLOCK_RECOVERED:
Synchronised with the clock signal
recovered in SONET/SDH frames received
from the connected SUT interface.

The allowable clock sources depends on the
Port Mode:
1 AGT_MODE_NORMAL : Internal,
Recovered
2 AGT_MODE_MONITOR: Recovered

ClockState Bool Specifies whether the selected clock source is
present:
1: Clock is present
0: Clock is not present
API Programming Guide
 165

6 Objects
AgtXmErrorEventLog
Syntax
166
AgtInvoke AgtXmErrorEventLog Method InParams -> OutParams
Methods
 EnableLogging

DisableLogging

IsLoggingEnabled -> isEnabled

SetLogFile LogFileName

GetLogFile -> LogFileName

Specify the pathname of the log file to be used. The log file will be
created when the test is started.
SelectPorts PortsList

ListSelectedPorts -> PortsList

Select the ports to be logged. Cannot be called while the test is running.
SelectErrors ErrorsList

ListAvailableErrors -> ErrorsList

ListSelectedErrors -> ErrorsList
Parameters
isEnabled Bool 1: Logging is Enabled
0: Logging is Off

LogFile String Log file name

StatisticsSelection Enum EAgtStatisticsSelectionChange

PortsList List of Long Select the ports to be logged
API Programming Guide

Objects 6
AgtXmAlarmEventLog
Syntax
API Programming Guide
AgtInvoke AgtXmAlarmEventLog Method InParams -> OutParams
Methods
 EnableLogging

DisableLogging

IsLoggingEnabled -> isEnabled

SetLogFile LogFileName

GetLogFile -> LogFileName

Specify the pathname of the log file to be used. The log file will be
created when the test is started.
SelectPorts PortsList

ListSelectedPorts -> PortsList

Select the ports to be logged. Cannot be called while the test is running.
SelectAlarms AlarmsList

ListAvailableAlarms -> AlarmsList

ListSelectedAlarms -> AlarmsList
Parameters
isEnabled Bool 1: Logging is Enabled
0: Logging is Off

LogFile String Log file name

StatisticsSelection Enum EAgtStatisticsSelectionChange

PortsList List of Long Select the ports to be logged
167

6 Objects
AgtStatisticsLog
Summary
168
This interface Records selected statistics to a comma separated file in
real time
Syntax
 AgtInvoke AgtStatisticsLog Method InParams -> OutParams
Methods
 EnableLogging

DisableLogging

Enable/Disable logging to the statistics log file.

IsLoggingEnabled -> IsLogEnabled

SetLogFile LogFile

GetLogFile -> LogFile

Sets the log file name, the default is statisticsN.csv, where N is the
session number.

SetLoggingInterval Interval

GetLoggingInterval -> Interval

Sets the frequency of logging in seconds, the default is 600 (10 minutes)

SelectPorts PortHandlesList

ListSelectedPorts -> PortHandlesList

ListAvailableStatistics -> Statistics

ListSelectedStatistics -> Statistics

SelectStatistics Statistics
Parameters
IsLogEnabled Bool 1: Logging is Enabled
0: Logging is Off

Interval Long Logging frequency in seconds
API Programming Guide

Objects 6
AgtStatisticsList
API Programming Guide
This interface is used to add a new statistics handle to be used with
AgtXmStatistics.
169

6 Objects
AgtXmSequenceCapture
Summary
170
Any predefined overhead byte group can be selected for sequence
capture. Valid options are K1K2 (in any STS-3c) and K1K2K3 (only for
first STS-3c). 256 unique values of the selected channel are displayed
along with the number of frames for which the value has occurred. This
provides a frame-by-frame log of any changes in the selected overhead
byte(s). Capture can be run over multiple ports simultaneously, allowing
users to correlate events happening at different nodes in the network.
Syntax
 AgtInvoke AgtXmSequenceCapture Method InParams -> OutParams
Methods
 SetCaptureByteGroup PortHandle CaptureByteGroup Sts3Num
Sts1Num

Sets up the Byte (group) which will be captured. Default Value is
AGT_XM_CAPTURE_BYTE_GROUP_K1K2. Only other valid
option is AGT_XM_CAPTURE_BYTE_GROUP_K1K2K3.

Following table lists the maximum and minimum valid values of these
parameters for various line-rates.

Sts1Num has meaning in the context of any particular STS-3c within the
payload. For the byte groups that do not require STS-3 and/or STS-1
numbers, any value you specify will be ignored.

GetCaptureByteGroup PortHandle -> CaptureByteGroup Sts3Num
Sts1Num

This function returns the currently selected Byte (group) for sequence
capturing

STS-192c STS-48c STS-12c STS-3c
Sts3Num [1..64] [1..16] [1..4] [1..1]

[1..3] [1..3] [1..3] [1..3]

Sts3 Sts1 No of Bytes Comments
Byte Group Name
AGT_XM_CAPTURE_BYTE_GROUP_K1K2 Y - 2
AGT_XM_CAPTURE_BYTE_GROUP_K1K2K3 - - 3
For any specific byte group, the columns marked with 'Y' are required to
be filled up with valid values and the ones with '-' will be ignored.

Sequence capture is triggered by Start of Gating.
API Programming Guide

Objects 6

API Programming Guide
Sequence Capture takes a minimum of ~32 msec (256 frames) to a
maximum of approx. 34 minutes (65535 * 256 frames) for an OC-192.
It automatically stops with the end of Gating, although it could also be
manually forced to stop before.
GetCaptureState PortHandle -> CaptureState

GetCapturedSequenceData PortHandle -> NumTransitions
NumBytesInByteGroup CaptureData
Parameters
PortHandl
e Long A handle to the test port, as returned by
AgtPortSelector.

Sts3Num Long Indicates the STS3 Number from which the selected
bytes will be captured.Valid range depends on the line
speed.
10G = [1-64];
2G5 = [1-16];
622M = [1-4];
155M = [1]

Sts1Num Long Indicates which STS1 column within the current STS3
should be used. Valid range 1-3.

CaptureByteGroup Enum enum EAgtXmCaptureByteGroup
AGT_XM_CAPTURE_BYTE_GROUP_K1K2

OverheadByte Enum Generic STS-3 naming.
CaptureState Enum EAgtXmCaptureState

AGT_XM_CAPTURE_STATE_IDLE
AGT_XM_CAPTURE_STATE_TRIGGER_ARMED
AGT_XM_CAPTURE_STATE_CAPTURING
AGT_XM_CAPTURE_STATE_COMPLETE
AGT_XM_CAPTURE_STATE_MAX

NumTransitions Long Number of transitions since the start of Sequence
Capture

NumBytesInByteG
roup

Long Number of Bytes in the currently selected Byte Group.
For instance
AGT_XM_CAPTURE_BYTE_GROUP_K1K2 has 2
bytes

CaptureData Cumulative data since the start of Sequence capture.
The data is organised as a single array. If there are 'n'
transitions and 'm' entries in the byte group. Then
number of elements in the array would be n * [m + 1].
The plus one is because of the count of the frames for
which the last value occurred.
171

6 Objects
AgtXmSonetVtConfig
Summary
172
This interface is used to configure the VT channel structure for the
transmitter and receiver.
Syntax
 AgtInvoke AgtXmSonetVtConfig Method InParams -> OutParams
Methods
 SetTxVtGroupConfig PortHandle Sts1 VtGroup VtStructure
GetTxVtGroupConfig PortHandle Sts1 VtGroup -> VtStructure

SetTxVtConfig PortHandle Sts1 VtStructure[]
GetTxVtConfig PortHandle Sts1 -> VtStructure[]

SetTxAllVtConfig PortHandle VtStructure[]
GetTxAllVtConfig PortHandle -> VtStructure[]

SetRxVtGroupConfig PortHandle Sts1 VtGroup VtStructure
GetRxVtGroupConfig PortHandle Sts1 VtGroup -> VtStructure

SetRxVtConfig PortHandle Sts1 VtStructure[]
GetRxVtConfig PortHandle Sts1 -> VtStructure[]

SetRxAllVtConfig PortHandle VtStructure[]
GetRxAllVtConfig PortHandle -> VtStructure[]

SelectVtGroups PortHandle MaskType Sts1 VtGroup[]
SelectVts PortHandle MaskType VtPositions[]
SelectAllVts PortHandle MaskType
SelectedVts PortHandle -> VtPositions[]

UnselectVtGroups PortHandle MaskType Sts1 VtGroup[]
UnselectVts PortHandle MaskType VtPositions[]
UnselectAllVts PortHandle MaskType
UnselectedVts PortHandle -> VtPositions[]

AutoDiscoverRxSignalStructure PortHandle
UndoAutoDiscoverRxSignalStructure PortHandle
GetAutoDiscoverRxSignalState PortHandle -> State

ResetVtConfig PortHandle
API Programming Guide

Objects 6
Parameters
API Programming Guide
Type Description
Name

PortHandle Long A handle to a port, as returned by AgtPortSelector.

Sts1 Long Number between 1 and 48 used to indicate the position within
the channel structure.

VtGroup Long Number between 1 and 7 used to indicate the Vt group within
any given STS-1.

VtStructure Enum EAgtXmVtType
AGT_XM_NO_VT, Used when STS-N has PDH payload

AGT_XM_VT2,
AGT_XM_VT1_5

MaskType Enum EAgtXmChannelMask
AGT_XM_CHANNELMASK_SELECTED_RX,
AGT_XM_CHANNELMASK_SELECTED_TX,
AGT_XM_CHANNELMASK_ERROR_ALARM

VtPositions Long List of VT positions formatted as Sts1, VtNumber, where Sts1
is the start position of the STS channel and VtNumber is the
position of the VT in the channel. VtNumber is in the range of
11 through 374 representing positions 1,1 through 3,7,4
Details

Each STS-1 must be configured with appropriate number of VT
channels e.g. to configure the first STS-1 to be VT2's use the command.

AgtInvoke AgtXmSonetVtConfig SetTxVtConfig PortHandle 1
AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2
AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2
AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2
AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2
AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2 AGT_XM_VT2
AGT_XM_VT2

Each STS-1 may contain 28xAGT_XM_VT1_5, 21xAGT_XM_VT2 or
1xAGT_XM_NO_VT (used for Direct Mapping of PDH structure
within STS-1).
173

6 Objects
AgtXmSdhTuConfig
Summary
174
This interface is used to configure the TU channel structure for the
transmitter and receiver.
Syntax
 AgtInvoke AgtXmSdhTuConfig Method InParams -> OutParams
Methods
 SetTxTuGroupConfig PortHandle Stm0 TuGroup TuStructure
GetTxTuGroupConfig PortHandle Stm0 TuGroup -> TuStructure

SetTxTuConfig PortHandle Stm0 TuGroup TuStructure[]
GetTxTuConfig PortHandle Stm0 TuGroup -> TuStructure[]

SetTxAllTuConfig PortHandle TuStructure[]
GetTxAllTuConfig PortHandle -> TuStructure[]

SetRxTuGroupConfig PortHandle Stm0 TuGroup TuStructure
GetRxTuGroupConfig PortHandle Stm0 TuGroup -> TuStructure

SetRxTuConfig PortHandle Stm0 TuStructure[]
GetRxTuConfig PortHandle Stm0 -> TuStructure[]

SetRxAllTuConfig PortHandle TuStructure[]
GetRxAllTuConfig PortHandle -> TuStructure[]

SelectTuGroups PortHandle MaskType Stm0 TuGroup[]
SelectTus PortHandle MaskType TuPositions[]
SelectAllTus PortHandle MaskType
SelectedTus PortHandle -> TuPositions[]

UnselectTuGroups PortHandle MaskType Stm0 TuGroup[]
UnselectTus PortHandle MaskType TuPositions[]
UnselectAllTus PortHandle MaskType
UnselectedTus PortHandle -> TuPositions[]
AutoDiscoverRxSignalStructure PortHandle
UndoAutoDiscoverRxSignalStructure PortHandle
GetAutoDiscoverRxSignalState PortHandle -> State

ResetTuConfig PortHandle
API Programming Guide

Objects 6
Parameters
API Programming Guide
Description
Name Type

PortHandle Long A handle to a port, as returned by AgtPortSelector

Stm0 Long Number between 1 and 48 used to indicate the position within the channel
structure.

TuGroup Long Number between 1 and 7 uesd to indicate the VT group within any given
STM-0

TuStructure Long EAgtXmTuType
AGT_XM_NO_TU
AGT_XM_TU3
AGT_XM_TU12
AGT_XM_TU11

MaskType EAgtXmChannelMask
AGT_XM_CHANNELMASK_SELECTED_RX,
AGT_XM_CHANNELMASK_SELECTED_TX,
AGT_XM_CHANNELMASK_ERROR_ALARM

TuPositions Long List of TU positions formatted as Stm0, TuNumber, where Stm0 is the start
position of the STM channel and TuNumber is the position of the TU in the
channel. TuNumber is in the range of 11 through 374 representing positions
1,1 through 3,7,4. . 100, 200, 300 are used to represent each of the possible
TU3's within an AU-4.
Details

Each AU-3/TUG-3 must be configured with appropriate number of TU
channels e.g. to configure the first AU-3 to be TU12's use the command.

AgtInvoke AgtXmSonetVtConfig SetTxVtConfig PortHandle 1
AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12
AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12
AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12
AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12
AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12 AGT_XM_TU12
AGT_XM_TU12

Each AU-3 may contain 28xAGT_XM_TU11, 21xAGT_XM_TU12 or
1xAGT_XM_NO_VT (used for Direct Mapping of PDH structure
within AU-3). Each TUG-3 may contain 28xAGT_XM_TU11,
21xAGT_XM_TU12, or 1xAGT_XM_TU3.
175

6 Objects
AgtXmSonetVtPathOverhead
Summary
176
This interface is used to configure the Low Order path overhead.
Syntax
 AgtInvoke AgtXmSonetVtPathOverhead Method InParams ->
OutParams
Methods
 GetTxPathOverheadByteMode PortHandle Sts1 VtNumber Byte ->
ByteMode
SetTxByteToDefaultValue PortHandle Sts1 VtNumber Byte
SetAllTxBytesToDefaultValue PortHandle Sts1 VtNumber
SetAllChannelsAllTxBytesToDefaultValue PortHandle
SetTxPathOverheadByte PortHandle Sts1 VtNumber VtByte
ByteValue
GetTxPathOverheadByte PortHandle Sts1 VtNumber Byte
SetTxPathOverheadHeader PortHandle Sts1 VtNumber
PathOverheadHeader
GetTxPathOverheadHeader PortHandle Sts1 VtNumber ->
PathOverheadHeader

SetTxPathTraceMessageLength PortHandle Sts1 VtNumber
TraceLength
GetTxPathTraceMessageLength PortHandle Sts1 VtNumber ->
TraceLength
SetTxPathTraceMessage PortHandle Sts1 VtNumber
PathTraceMessage
SetTxPathTraceMessageToDefault PortHandle Sts1 VtNumber
GetTxPathTraceMessage PortHandel Sts1 VtNumber ->
PathTraceMessage
SetAllTxPathTraceMessages PortHandle PathTraceMessage

IncrementTxPointer PortHandle VtType
DecrementTxPointer PortHandle VtType
SetNewTxPointerValue PortHandle VtType PointerValue NDFState
GetCurrentTxPointerValue PortHandle VtType -> PointerValue

SetCurrentRxChannel PortHandle Sts1 VtNumber
GetCurrentRxChannel PortHandle -> Sts1 VtNumber

GetRxPathOverheadByte PortHandle Byte -> Sts1 VtNumber
ByteValue
GetRxPathOverheadHeader PortHandle -> Sts1 VtNumber
PathOverheadHeader

SetRxExpectedPathTraceMessageLength PortHandle Sts1 VtNumber
TraceLength
GetRxExpectedPathTraceMessageLength PortHandle Sts1 VtNumber
-> TraceLength
SetRxExpectedPathTraceMessage PortHandle Sts1 VtNumber
PathTraceMessage
GetRxExpectedPathTraceMessage PortHandle Sts1 VtNumber ->
PathTraceMessage
SetAllRxExpectedPathTraceMessagesAsReceived PortHandle
SetRxExpectedPathTraceMessageAsReceived PortHandle Sts1
VtNumber
API Programming Guide

Objects 6

API Programming Guide
GetRxPathTraceMessage PortHandle -> Sts1 VtNumber
TraceLength PathTraceMessage

StartPathTraceMessageCheck PortHandle
IsPathTraceMessageCheckOn PortHandle -> Result (BOOL)
IsRxPathTraceMessageAsExpected PortHandle -> Result (BOOL)
PathTraceMessage
IsMultiRxPathTraceMessageAsExpected PortHandle ->
MatchingChannelList ErroredChannelList
Parameters
Name Type Description

PortHandle Long A handle to a port, as returned by AgtPortSelector.

Sts1 Long Number between 1 and 48 used to indicate the position within the channel
structure.

VtGroup Long Number between 1 and 7 used to indicate the VT group within any given
STS-1.

VtType Enum EAgtXmVtType
AGT_XM_NO_VT, - Used when STS-N has PDH payload
AGT_XM_VT2,
AGT_XM_VT1_5

MaskType Enum EAgtXmChannelMask
AGT_XM_CHANNELMASK_SELECTED_RX,
AGT_XM_CHANNELMASK_SELECTED_TX,
AGT_XM_CHANNELMASK_ERROR_ALARM

VtNumber Long 11 through 74 representing positions 1,1 through 7,4
177

6 Objects
VtByte Enum EAgtXmPathOverheadByte
AGT_XM_SONET_V5
,AGT_XM_SONET_J2,
AGT_XM_SONET_Z6,
AGT_XM_SONET_Z7,
AGT_XM_SONET_J1,
AGT_XM_SONET_B3,
AGT_XM_SONET_C2,
AGT_XM_SONET_G1,
AGT_XM_SONET_F2,
AGT_XM_SONET_H4,
AGT_XM_SONET_Z3,
AGT_XM_SONET_Z4,
AGT_XM_SONET_N1

J2Msg String Alphanumeric string of up to 15 bytes
ByteValue Byte Numeric value in the range of 0 to 255
Matching VtList Sts1, VtNumber list for the positions for each VT where the J2 message was

as expected.
ErroredVtList Sts1, VtNumber list for the positions for each VT where the J2 message was

not as expected.
Pointer Value Long

Name Type Description
178 API Programming Guide

Objects 6
AgtXmSdhTuLoPathOverhead
Summary
API Programming Guide
This interface is used to configure the TU path overhead.
Syntax
 AgtInvoke AgtXmSdhTuPathOverhead Method InParams ->
OutParams
Methods
 GetTxPathOverheadByteMode PortHandle Stm0 TuNumber Byte ->
ByteMode

SetTxByteToDefaultValue PortHandle Stm0 TuNumber Byte
SetAllTxBytesToDefaultValue PortHandle Stm0 TuNumber
SetAllChannelsAllTxBytesToDefaultValue PortHandle
SetTxPathOverheadByte PortHandle Stm0 TuNumber TuByte
ByteValue
GetTxPathOverheadByte PortHandle Stm0 TuNumber TuByte
SetTxPathOverheadHeader PortHandle Stm0 TuNumber
PathOverheadHeader
GetTxPathOverheadHeader PortHandle Stm0 TuNumber ->
PathOverheadHeader

SetTxPathTraceMessageLength PortHandle Stm0 TuNumber
TraceLength
GetTxPathTraceMessageLength PortHandle Stm0 TuNumber ->
TraceLength
SetTxPathTraceMessage PortHandle Stm0 TuNumber
PathTraceMessage
SetTxPathTraceMessageToDefault PortHandle Stm0 TuNumber
GetTxPathTraceMessage PortHandel Stm0 TuNumber ->
PathTraceMessage
SetAllTxPathTraceMessages PortHandle PathTraceMessage

IncrementTxPointer PortHandle TuType
DecrementTxPointer PortHandle TuType
SetNewTxPointerValue PortHandle TuType PointerValue NDFState
GetCurrentTxPointerValue PortHandle TuType -> PointerValue

SetCurrentRxChannel PortHandle Stm0 TuNumber
GetCurrentRxChannel PortHandle -> Stm0 TuNumber

GetRxPathOverheadByte PortHandle Byte -> Stm0 TuNumber
ByteValue
GetRxPathOverheadHeader PortHandle -> Stm0 TuNumber
PathOverheadHeader

SetRxExpectedPathTraceMessageLength PortHandle Stm0 TuNumber
TraceLength
GetRxExpectedPathTraceMessageLength PortHandle Stm0 TuNumber
-> TraceLength
SetRxExpectedPathTraceMessage PortHandle Stm0 TuNumber
PathTraceMessage
GetRxExpectedPathTraceMessage PortHandle Stm0 TuNumber ->
PathTraceMessage
SetAllRxExpectedPathTraceMessagesAsReceived PortHandle
179

180

6 Objects
SetRxExpectedPathTraceMessageAsReceived PortHandle Stm0
TuNumber

GetRxPathTraceMessage PortHandle -> Stm0 TuNumber
TraceLength PathTraceMessage

StartPathTraceMessageCheck PortHandle
IsPathTraceMessageCheckOn PortHandle -> Result (BOOL)
IsRxPathTraceMessageAsExpected PortHandle -> Result (BOOL)
PathTraceMessage
IsMultiRxPathTraceMessageAsExpected PortHandle ->
MatchingList ErroredList
Parameters
Type Description
Name
PortHandle Long A handle to a port as returned by AgtPortSelector

Stm0 Long Number between 1and 48 used to indicate the position within
the channel structure.

TuType Enum EAgtXmTuType
AGT_XM_NO_TU, // Used when AU-3/4 has PDH payload
AGT_XM_TU3,
AGT_XM_VT2,
AGT_XM_VT1_5

MaskType Enum EAgtXmChannelMask
AGT_XM_CHANNELMASK_SELECTED_RX,
AGT_XM_CHANNELMASK_SELECTED_TX,
AGT_XM_CHANNELMASK_ERROR_ALARM

TuNumber Long 11 through 374 representing positions 1,1 through 3,7,4.
API Programming Guide

Objects 6
TuByte Enum EAgtXmPathOverheadByte
AGT_XM_SDH_V5,
AGT_XM_SDH_J2,
AGT_XM_SDH_N2,
AGT_XM_SDH_K4,
AGT_XM_SDH_J1,
AGT_XM_SDH_B3,
AGT_XM_SDH_C2,
AGT_XM_SDH_G1,
AGT_XM_SDH_F2,
AGT_XM_SDH_H4,
AGT_XM_SDH_F3,
AGT_XM_SDH_K3,
AGT_XM_SDH_N1

ByteValue Byte Numeric value in the range of 0 to 255

MatchingList Stm0,TuNumber list for the positions for each TU where the J2
message was as expected.

ErroredList Stm0, TuNumber list for the positions for each TU where the J2
message was not as expected.

PointerValue Long

Name Type Description
API Programming Guide
 181

6 Objects
AgtXmLoPayload
Summary
182
Configures the payload of ALL the selected transmit channels of any
given port.
Methods
 SetTxPayloadType PortHandle PayloadType LoPositions[]
GetTxPayloadType PortHandle LoPositions[] -> PayloadType[]

SetTxPayloadUserPattern PortHandle PayloadPattern
GetTxPayloadUserPattern PortHandle -> PayloadPattern

SetRxPayloadType PortHandle PayloadType LoPositions[]
GetRxPayloadType PortHandle LoPositions[] -> PayloadType[]

SetRxExpectedPayloadUserPattern PortHandle PayloadPattern
GetRxExpectedPayloadUserPattern PortHandle -> PayloadPattern
Parameters
Name Type Description

PortHandle Long A handle to a port, as returned by AgtPortSelector

PayloadType Enum EAgtXmPayloadType
AGT_XM_PAYLOAD_PRBS_23
AGT_XM_PAYLOAD_PRBS_23_INVERTED
AGT_XM_PAYLOAD_USER_PATTERN
AGT_XM_PAYLOAD_USER_LIVE

PayloadPattern Long 16 bit value

LoPositions List of Vt/Tu start positions to set to payload type.
API Programming Guide

Objects 6
AgtXmLoSettings
Summary
API Programming Guide
This interface is used to configure the Low Order settings.
Syntax
 AgtInvoke AgtXmLoSettings Method InParams -> OutParams
Methods
 SetTxMapping PortHandle Type Mapping
GetTxMapping PortHandle Type -> Mapping

SetRxMapping PortHandle Type Mapping
GetRxMapping PortHandle Type -> Mapping
Parameters
Name Type Description

PortHandle Long A handle to aport, as returned by AgtPortSelector

Type Enum EAgtXmType
AGT_XM_NO_VT, Used when STS-N has PDH payload
AGT_XM_VT2,
AGT_XM_VT1_5,

Mapping Enum EAgtXmMappingType
AGT_XM_DS1_ASYNC_SF
,AGT_XM_DS1_ASYNC_ESF,
AGT_XM_BULK_FILLED,
AGT_XM_E1_ASYNC_UNFRAMED,
AGT_XM_E1_ASYNC_CRC_ON,
AGT_XM_E1_ASYNC_CRC_OFF,
AGT_XM_DS3_ASYNC_UNFRAMED,
AGT_XM_DS3_ASYNC_M23,
AGT_XM_DS3_ASYNC_CBP,
AGT_XM_E3_ASYNC_UNFRAMED
183

6 Objects
AgtXmTuSettings
Summary
184
This interface is used to configure the TU settings.
Syntax
 AgtInvoke AgtXmTuSettings Method InParams -> OutParams
Methods
 SetTxMapping PortHandle Type Mapping
GetTxMapping PortHandle Type -> Mapping

SetRxMapping PortHandle Type Mapping
GetRxMapping PortHandle Type -> Mapping
Parameters
ype Description
Name T

PortHandle Long A handle to a port, as returned by AgtPortSelector.

Type Enum EAgtXmTuType
AGT_XM_NO_TU, // Used when AU-N has PDH payload
AGT_XM_TU3
AGT_XM_TU12
AGT_XM_TU11

Mapping Enum EagtXmMappingType
AGT_XM_DS1_ASYNC_SF,
AGT_XM_DS1_ASYNC_ESF,
AGT_XM_BULK_FILLED,
AGT_XM_E1_ASYNC_UNFRAMED,
AGT_XM_E1_ASYNC_CRC_ON,
AGT_XM_E1_ASYNC_CRC_OFF,
AGT_XM_DS3_ASYNC_UNFRAMED,
AGT_XM_DS3_ASYNC_M23,
AGT_XM_DS3_ASYNC_CBP,
AGT_XM_E3_ASYNC_UNFRAMED
API Programming Guide

Objects 6
AgtXmOptionController
Syntax
API Programming Guide
AgtInvoke AgtXmOptionController Method InParams -> OutParams
Methods
 SetOption PortHandle serial option key
DisableOption PortHandle serial option key
GetOption PortHandle -> Enabled Options
IsOptionEnabled PortHandle option -> State (BOOL)
Parameters

Name Type Description

PortHandle Long A handle to a port, as returned by
AgtPortSelector

serial String The serial number of the hardware

option String The option to be Set / disabled
Supported Datatypes
The functionality of the System layer is accessed by the GUI , TCL and
SCPI clients using Microsoft's Component Object Model (COM).
Combining this with the use of only Automation data types provides an
interface, which can be used by many different languages.
185

186

6 Objects
API Programming Guide

Index
A
About QuickTest, 22
Add tester ports, 31
AgtBreakPoint, 47
AgtChannelMaskType, 158
AgtCloseSession, 49
AgtConnect, 50
AgtDisconnect, 52
AgtFormatTime, 53
AgtGetActiveConnection, 54
AgtGetServerHostname, 55
AgtGetSessionLabel, 56
AgtGetSessionPid, 57
AgtGetSessionType, 58
AgtGetVersion, 59
AgtInvoke, 60
AgtKillSession, 61
AgtListConnections, 62
AgtListObjects, 63
AgtListOpenSessions, 64
AgtListSessionTypes, 65
AgtOpenSession, 66
AgtOpticalInterface, 164
AgtResetSession, 68
AgtRestoreSession, 69
AgtSaveSession, 70
AgtSetActiveConnection, 72
AgtSetServerHostname, 73
AgtSetSessionLabel, 74
AgtStatisticsList, 169
AgtTestController, 79
AgtXmPayload, 140
AgtXmSdhAlarm, 126
AgtXmSdhChannelConfig, 160
AgtXmSdhError, 123
AgtXmSdhPathOverhead, 139
AgtXmSdhSectionOverhead, 117
AgtXmSdhStatistics, 148
AgtXmSettings, 110
AgtXmSonetAlarm, 124
AgtXmSonetChannelConfig, 156
API Programming Guide
AgtXmSonetError, 120
AgtXmSonetPathOverhead, 132
AgtXmSonetStatistics, 141
AgtXmSonetTransportOverhead, 11

3
AgtXmStatus, 127

B
Byte

Overhead, 114

C
Channel Config SDH, 160
Channel Mask, 158
ChannelConfig Sonet, 156
ChannelList, 158
ChannelType, 158
Clear down, 34
Collect results, 34
command quick reference, 78
command type definitions, 77
commands

AgtPortSelector, 95
Configure a test, 33
Configure the ports, 31
Connect to a new test session, 27
Connect to an existing test

session, 28
Control lasers, 78
Control tests, 78
create a new QuickTest script, 22

D
DescramblerState, 111

E
EagtXmSonetRate Types, 122
edit a script, 22
ElapsedTime, 80
error handling, 26
ErroredChannelList, 136
ErrorRateBase, 121
ErrorRatePower, 121
ErrorState, 122
example session

establish a connection, 27

G
GuardTime, 142, 149

K
K1,K2, 115

L
laser turn on, 31
LineRate, 111
LineRateOffset, 111
Log statistics, 78

M
Manage sessions, 78

O
Optical Interface, 164
OverheadBytesSnapshot, 116

P
PathOverheadSnapshot, 136
Payload, 140
PayloadPattern, 140
PayloadType, 140
PointerValue, 135
187

Index
Q
Quick Reference, 78
quick reference, 78
QuickTest, 22
QuickTest documentation, 23

R
REILErrorMode, 121
Result, 136
results collection, 34
return value, 26
Run a test, 33
Running Example TCL Scripts, 35

S
ScramblerState, 111
Sdh AlarmType, 125
SdhChannelConfig, 160
SdhError, 123
SdhPathOverhead, 139
SdhSectionOverhead, 117
SectionTrace, 115
Select ports, 78
sessions, 17

stages of a typical session, 19
SignalStandardMode, 111
Sonet Channel Config, 156
Sonet TransportOverhead, 113
SonetAlarm, 124
SonetAlarmType, 125
SonetError, 121
SonetErrors, 120
SonetPathOverhead, 132
StartTime, 80
Statistics

SDH, 149
Sdh, 148
SONET, 142
Sonet, 141

Statistics selection, 32
StatisticsList, 169
StatisticsResults, 149
Status

Alarms/Errors, 127
Stop a test, 34
Sts1Pos, 115
188
Supported Datatypes, 185
syntax choice

Tcl, 17

T
TCL Script

Running Tcl Scripts, 35
Tcl shell

interacting, 42
launching from DOS, 40
launching from GUI, 40
launching from Windows, 40
overview, 40
properties, 41
quickedit mode, 41

Tcl syntax, 17
TestController, 79
TestState, 80
To communicate with the tester, 44
To debug scripts, 46
To manage test objects, 45
To manage test sessions, 44
To manage tests remotely, 45
TraceLength, 115
TransmitterMode, 125
Turn a port laser on, 31
type definitions, 77

V
Value, 115
Viewing the DemoTclScript file, 37
API Programming Guide

sdh_Lynx2.book Page 148 Wednesday, April 17, 2002 12:49 PM

Printed in U.K. 03/04

J7241-90012

	Contents
	Introduction to the API
	Overview
	Tcl syntax
	Sessions
	Session Stages

	QuickTest
	About QuickTest
	Creating your own QuickTest scripts

	Example session
	Introduction
	Error and Return Value Handling

	Step 1: Establish a connection
	Connect to a new test session
	Connect to an existing test session

	Step 2: Configure the ports
	Add tester ports
	Turn a port laser on and confirm the action

	Statistics selection
	Step4: Configure a test
	Step 5: Run the test
	Step 6:Collect the results
	Step 7: Stop the test
	Step 8: Clear down
	Running Example Tcl Scripts

	Tcl Shell - Interactive Control
	Tcl Shell Overview
	To interact through a Tcl shell

	Commands
	Quick Reference
	AgtBreakPoint
	AgtCloseSession
	AgtConnect
	AgtDisconnect
	AgtFormatTime
	AgtGetActiveConnection
	AgtGetServerHostname
	AgtGetSessionLabel
	AgtGetSessionPid
	AgtGetSessionType
	AgtGetVersion
	AgtInvoke
	AgtKillSession
	AgtListConnections
	AgtListObjects
	AgtListOpenSessions
	AgtListSessionTypes
	AgtOpenSession
	AgtResetSession
	AgtRestoreSession
	AgtSaveSession
	AgtSetActiveConnection
	AgtSetServerHostname
	AgtSetSessionLabel

	Objects
	Type Definitions
	Quick Reference
	AgtTestController
	AgtModuleManager
	AgtSessionManager
	AgtPortSelector
	AgtTestSession
	AgtXmSettings
	AgtXmSonetTransportOverhead
	AgtXmSdhSectionOverhead
	AgtXmSonetError
	AgtXmSdhError
	AgtXmSonetAlarm
	AgtXmSdhAlarm
	AgtXmStatus
	AgtXmSonetPathOverhead
	AgtXmSdhPathOverhead
	AgtXmPayload
	AgtXmSonetStatistics
	AgtXmSdhStatistics
	AgtXmSonetChannelConfig
	AgtXmSdhChannelConfig
	AgtXmBurstControl
	AgtOpticalInterface
	AgtXmErrorEventLog
	AgtXmAlarmEventLog
	AgtStatisticsLog
	AgtStatisticsList
	AgtXmSequenceCapture
	AgtXmSonetVtConfig
	AgtXmSdhTuConfig
	AgtXmSonetVtPathOverhead
	AgtXmSdhTuLoPathOverhead
	AgtXmLoPayload
	AgtXmLoSettings
	AgtXmTuSettings
	AgtXmOptionController
	Supported Datatypes

	Index

